论文部分内容阅读
丙烯酸酯橡胶(ACM)是一种带有饱和主链的特种橡胶,具有良好的耐热性、耐油性、耐候性等性能,且其原料便宜易得,在汽车工业中的应用前景广阔。目前,国内生产的ACM橡胶种类较少,主要以氯型ACM为主,但其存在严重的环境污染、腐蚀金属零部件等问题。基于此,本论文利用乳液聚合法合成出羧基型ACM,对其结构及性能进行了表征,并探讨了其硫化机理;在此基础上,以丙烯酸六氟丁酯(HFBA)为共聚单体,将其引入到羧基型ACM分子链中,研究其用量对ACM耐油性、疏水性及力学性能的影响;进一步地,采用还原氧化石墨烯(RGO)对ACM橡胶进行增强,制备了ACM/RGO橡胶复合物,研究RGO对ACM耐热性和力学性能的影响。论文的主要研究内容和结果包括以下三个方面:(1)以丙烯酸(AA)、丙烯酸丁酯(BA)和丙烯酸乙酯(EA)为单体,采用半连续种子乳液聚合法合成出羧基型丙烯酸酯生胶,并选用1#硫化剂(HMDC,六亚甲基二胺氨基甲酸盐)和促进剂DPG(二苯胍)为硫化体系,使羧基型ACM分子链发生交联反应。探究了不同单体用量对ACM橡胶聚合体系单体转化率、乳胶粒径大小及分布的影响。傅里叶红外光谱仪(FTIR)证实了羧基型ACM的化学结构。利用DSC分析了不同单体用量的ACM橡胶的玻璃化温度(Tg)。测试了不同单体用量的ACM橡胶的耐油性和力学性能。研究发现,随着AA用量的增加,ACM的拉伸强度逐渐提高,断裂伸长率降低。当AA的用量为8%时,ACM硫化胶的拉伸强度由空白样的3 MPa提高至7.40 MPa,其玻璃化温度(Tg)由-22.40°C升高至-15°C。(2)为了改善羧基型ACM的疏水性,以丙烯酸六氟丁酯(HFBA)为功能单体对其改性,合成出氟化丙烯酸酯橡胶(FACM)。通过FTIR和能量色散谱(EDS)等测试方法证实了HFBA被成功引入丙烯酸酯橡胶分子链中。利用接触角仪对FACM的表面疏水性进行了表征,测试了不同HFBA用量的FACM的耐油性和力学性能。结果表明,随着HFBA用量的增加,FACM的表面接触角逐渐变大。当HFBA用量为8%时,FACM的表面接触角提高至90°,约为纯ACM的2倍。同时,由于含氟侧基的包裹作用,含8%HFBA的FACM的吸油率和断裂伸长率分别从11.47%和606%降低至9.32%和244%。(3)为了提高羧基型ACM的力学性能,采用乳液共混法先将ACM乳液与氧化石墨烯(GO)溶液混合,然后利用水合肼原位还原乳液中的GO,制备出ACM/RGO橡胶复合物。通过FTIR、X-射线光电子能谱(XPS)、X-射线衍射(XRD)、拉曼光谱(Raman)等手段证实了GO向RGO转变。透射电镜(TEM)和扫描电镜(SEM)表明RGO在ACM中分散均匀;探究了RGO用量对ACM橡胶耐水性、耐热性和力学性能的影响。结果表明,随着RGO用量的增大,ACM/RGO橡胶复合物的拉伸强度、撕裂强度和硬度逐渐变大,其断裂伸长率逐渐降低。当RGO用量为2%时,ACM/RGO-2硫化胶的拉伸强度达到18.80 MPa,约为未改性ACM硫化胶的5.5倍,且断裂伸长率下降不明显。同时,由于石墨烯片层的阻隔作用,ACM/RGO-2硫化胶的吸水率从54.60%降低至18.40%。