新型生物基金属-有机气凝胶的制备及其对抗生素吸附性能研究

来源 :昆明理工大学 | 被引量 : 0次 | 上传用户:speed5188
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
废水中的抗生素污染物对生态系统和人类健康造成了严重危害,如何高效去除成为目前的一个研究热点。金属-有机气凝胶(Metal-Organic Aerogels,MOAs)作为一种新型的多孔材料,因具有密度低、比表面积高和孔隙大的优点而在吸附有机污染物方面表现出独特的优势。本论文以生物可再生的2,5-呋喃二羧酸(2,5-furandicarboxylic acid,FDCA)为有机配体与Fe(NO3)3·9H2O在N,N二甲基甲酰胺和乙醇混合溶液为溶剂的条件下首次制备得到了以金属铁为中心的生物基金属-有机气凝胶材料(Fe-MOA),并进一步探究了其在废水中抗生素治理方面的应用。具体研究内容如下:(1)在合成过程中考察了反应条件对Fe-MOA吸附四环素吸附性能的影响。实验发现,以N,N二甲基甲酰胺和乙醇混合溶液为溶剂(体积混合比为1:1),金属盐与配体的摩尔比为1:1,反应物浓度为0.08 mol·L-1,反应温度为110℃,反应时间为24 h时获得的Fe-MOA吸附性能最佳。随后采用FT-IR、XPS、SEM、TEM、EDX、TGA和BET等手段对Fe-MOA进行表征。结果表明,Fe-MOA是一种由金属Fe3+与有机配体通过配位键Fe-O连接而成的具有三维网络结构的多孔材料,比表面积高达512 m2·g-1。(2)采用密度泛函理论(Density functional theory,DFT)计算四环素、盐酸金霉素、环丙沙星和甲硝唑四种抗生素分子的大小,并评估Fe-MOA对其吸附的可行性,并进一步通过实验探索吸附性能。实验发现,Fe-MOA对四环素和盐酸金霉素的吸附效果较好,对环丙沙星无吸附效果,这可能与抗生素分子的结构、带电性和亲疏水性有关。Fe-MOA重复使用四个周期后仍保持较高的吸附能力。(3)对Fe-MOA吸附四环素的过程进行吸附动力学、吸附等温线和热力学分析,并探究吸附机理。结果表明,拟二级动力学模型和液膜扩散模型对吸附动力学拟合良好,Freundlich模型对吸附等温线拟合良好,并且吸附反应为自发吸热反应。Fe-MOA对四环素超高的吸附能力是由静电相互作用、氢键、阳离子键桥以及π-π相互作用等多种作用力协同驱动的结果。
其他文献
医院在社会中承担着为人民提供医疗服务的重任,而医院的医疗服务质量将对人民身体健康造成深刻影响。目前,公立医院仍是我国医疗服务体系的主体,公立医院只有不断提高自身医疗服务质量,才能更好的满足人民对医疗的需求。对医疗服务质量进行科学有效的管理,提升医疗品质,有助于缓解医患关系,维护社会和谐。管理学大师彼得德鲁克曾经说过“你如果无法度量它,就无法管理它”。行之有效的管理,离不开科学合理的衡量方式。科学合
生物质作为极具发展潜力的可再生能源,完美的契合了我国“碳中和”的发展理念。鼓泡流化床具有原料适用性广,传热强度大,气固相间接触效率高等特点,在生物质气化领域具有广泛的应用,因此受到了工业界和学术界的重点关注。但反应器内气固流动同热态气化反应的高度耦合给传统实验研究带来了巨大的挑战,数值模拟手段凭借着强大的计算能力成为了解决方案。本文通过数值模拟方法,对鼓泡流化床中生物质气化及气固流动细节开展了相关
连杆是内燃机中关键的传动件之一,它将活塞和曲轴连接起来,在工作过程中,连杆处于一个复杂的应力状态,因此具有较高的尺寸精度、形状精度及位置精度。而气动量仪具有无接触、效率高、速度快等优点,在精密测量领域得到了广泛应用。然而现有浮标式气动量仪在测量使用过程中会发生测量数值不稳定、测头磨损等现象,从而导致被测工件的实际尺寸和形位公差不准确。本文对气动量仪测头流场和浮标显示玻璃管内流场进行分析,并提出一种
随着当今社会和经济的高速发展,人们对于能源的需求也越来越大,但是对化石能源的过度开采不仅会导致资源匮乏同时对于环境也会有一定的破坏,所以减少化石燃料的使用和探索开发可持续再生能源对于社会的发展具有重大的意义。氢质子交换膜燃料电池(PEMFC)以其高功率密度,快速启动、较低的工作温度和环境友好等优点而受到广泛关注。然而,其阴极氧还原反应(ORR)是一个缓慢的动力学过程,需要催化剂来加速这一反应。到目
超级电容器是一种新型的储能器件,具有充放电速度快、功率密度高、循环寿命长、工作温限宽等众多优点,它在新能源汽车、太阳能系统、可穿戴器件等领域被广泛研究与应用。对于超级电容器来说,电极是影响其电化学储能性能的关键元件,因此获取拥有优良电化学储能性能的电极材料是相关科研人员的主要方向。α-Co(OH)2作为一种非本征赝电容材料,拥有较高的理论比电容、良好的导电性、类滑石层状结构以及丰富的自然资源,被人
随着社会和科学技术的不断发展,人们对生活和居住环境的要求越来越高,导致了建筑能耗迅速增长。同时建筑能耗的不断提高,对传统能源的使用和全球气候变暖等问题提出了严峻的考验。其中家庭及工业供暖占据了建筑能耗的较大比重。为解决家庭供暖供热需求,太阳能等新能源以其良好的环境友好性一直受到人们的关注和青睐。太阳能因其总量大、分布广、易获取及无污染等优点已经被人们广泛地开发和利用。将太阳能利用技术与现代建筑相结
锂离子电池(LIBs)因其环保、高输出电压、大容量、长循环寿命和无记忆效应等特点,是各种便携式设备的优秀电源。最近,过渡金属氧化物如Ti O2、Mn O2和V2O5等具有微观和纳米结构的材料已被研究为锂离子电池电极的潜在候选材料。在这些材料中,V2O5具有典型的二维层状晶体结构,提高了锂离子的存储能力,理论比容量高达420m Ah/g。但V2O5也存在比表面积小、电导率低、充电过程中易发生相变、结
隔震技术是重要的防灾减灾手段之一,由于其简单实用、概念明确、效果明显等特点,深受国家重视。但由于隔震支座抗拉性能很低,在高烈度地区的高宽比较大的高层建筑上,隔震支座很难满足抗震规范要求,隔震技术在高层建筑上推广的进程受到了很大的阻碍。通过改进橡胶配方的方法可以提高隔震支座的抗拉性能。本文研究了一种小试样与原型隔震支座抗拉性能的关系,通过测量不同胶料制成的小试样就可以反映隔震支座抗拉性能,可以减少抗
随着微电子器件的迅速发展,电子器件的集成度不断提高,因此,科研人员逐渐将目光转向了具有半导体性质的二维纳米材料。在这之中,MoS2与NiO因其具有良好的结构稳定性与优异的性能,受到科研人员的广泛关注。MoS2是一种典型的过渡金属硫族化合物,且随着层数的变化其带隙呈现出可调控性,薄膜的层数不同其荧光特性也不同。NiO是一种拥有典型3d电子能带结构、优异的电学性能与光学性能的宽禁带P型半导体材料,广泛