量子拟shuffle代数与q-拟对称函数

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:bianhaoyi1000
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
文章的主要研究对象是量子拟shuffle代数.本博士论文分为三个部分:第一部分给出多参数量子群的量子拟对称代数实现,这是一种公理化的构造方式.第二部分考虑一类特殊的量子拟shuffle代数,q-拟对称函数代数.特别地,我们研究了奇拟对称函数代数的组合性质.第三部分详尽刻画了一个tame表示型阶化Hopf代数(?)-1(2)的不可分解模结构以及其张量积分解结构,从而确定其表示环(Green环),以及相应的Jacobson根(radical)另外,我们考察了(?)-1(2)的两个Hopf2-上圈扭形变代数的Green环,以此观察Hopf2-上圈扭形变(Hopf代数理论研究中的热点之一)对Hopf代数结构带来的本质不同.这三部分的逻辑关联如下:第一二部分都是关于量子拟对称性的研究,后者在辫子更特殊的情形下展开讨论并给出组合上的应用(相信将来会在表示论中得到进一步的应用).第二三部分可以看作是对两种代数结构在“q=-1现象””(或称“超情形”)时的研究.在第一章中,我们要考虑量子群实现这一核心问题,其中开创性的工作有Ringel [74]的Hall代数实现,Rosso[75]的量子shuffle代数的公理化实现,以及Bridgeland [9]借组Hall代数的整体实现等.为此,我们首先一般性地介绍量子拟shuffle代数的概念,尤其是要深入了解量子拟shuffle乘积.然后参考Fang-Rosso关于单参数整体量子群实现的工作[25],利用量子拟shuffle代数的玻色化,量子拟对称代数,公理化实现多参数量子群(非单位根情形).这种实现方式还有一个优点,就是能进一步实现量子群的可积不可约表示.其中,对于相应的Hopf代数同态的单性,Fang-Rosso原来的证明是存在明显漏洞的.这里我们借助Chin-Musson关于量子群余根基滤过的工作给出新的证明.在第二章中,我们将考虑q-拟对称函数代数.作为辫子Hopf代数,它的辫子特殊地取为着色辫子.在正文中我们称这类辫子Hopf代数为q-Hopf代数.借助于辫子Hopf代数方面的知识,我们研究了q-拟对称函数代数的若干组合性质.譬如q-拟对称函数成为q-对称函数的判别准则,这在寻找奇Schur函数时至关重要.我们希望从q-拟对称函数的角度出发来研究q-对称函数,为此,我们将在第三章中定义两类著名的组合Hopf代数的q形变,它们分别是Malvenuto-Reutenauer代数和Poirier-Reutenauer代数.作为副产品,我们将一个关于Hopf代数交叉积分解的定理推广到了辫子的情形.另外,我们还得到一系列q-Hopf代数的关系图.在第四章中,特别考虑q为-1,即Hopf超代数的情形.通过PR-代数的q形变可以自然得到由Khovanov, Ellis和Lauda定义的奇Schur函数,以及相应的奇Littlewood-Richardson律(这有别于Ellis借助奇Schur函数三种等价定义所得的证明,是更简洁的新证明).这样的做法启发我们进一步考虑奇拟对称函数与奇Schur函数之间的关系.在第五章中,本人将给出这部分的主要工作:拟对称Schur函数这组新的基在奇拟对称函数上的类比,它可以作为奇Schur函数在奇拟对称函数上的加细.相应地,我们给出奇拟对称Schur函数的Pieri律,以及它的对偶基,Young非交换Schur函数,的Littlewood-Richardson律.另外作为应用,我们将在第六章中借助Bergeron, Lam等关于组合Hopf代数到对偶阶化图的构造实现各类有趣的q-对偶阶化图.而在最后一章中,我们试图考虑由胡乃红定义的n秩Taft代数的Green环,最终得到秩二情形且q=-1时的完整结果.“q=-1”的情形为“小量子群”的研究提供了相对简单的代数结构,但表示论己相当复杂.一般小量子群表示论的巨大复杂度由此可见一斑.另外,为了突显Hopf2-上圈扭形变的研究价值,我们也考虑了2秩Taft代数的两个Hopf2-上圈扭代数,H4(?)H4和D(H4),的Green环,并由此得知Hopf2-上圈扭形变对于Hopf代数的Green环的影响十分显著.值得一提的是,后来通过查阅Caenepeel等人关于16维点Hopf代数分类的工作[10],得知余根基为4维Klein群代数的16维点Hopf代数有五个互异同构类,而我们所找的例子恰是其中三个存在Hopf2-上圈扭等价的互异同构类,剩余两个并没有上圈扭等价关系.
其他文献
本文首先研究了非实秩零的AT-代数,证明了(V*(E),T(E),[1],rE)为该类代数的完全不变量,即设E,E′为AT-代数,其商代数Q(E),Q(E′)为有单位元的单的AT-代数。若V*(E)与V*(E′)同构,且保持单位元等价类;T(E)与T(E′)仿射同胚,且同构映射与同胚映射相容,则存在E与E′的同构导出上述同构和同胚,所谓AT-代数即为圆代数通过κ的本质酉扩张的矩阵代数的有限直和的归
癌症是当今世界的头号杀手,严重影响人类的健康。DNA烷基化是一种有诱变性的致命DNA损伤,如果得不到修复就会破坏细胞基因组的完整性,造成遗传信息不可逆的改变进而导致相关疾病的发生,如癌症。同时,烷基化药物是目前主流的抗癌药物之一,但也存在一定的问题如抗药性。DNA去烷基化酶负责修复烷化剂引起的DNA损伤,对它们生物学功能的研究将有助于了解癌症的发生机理以及解决抗癌药物抗药性问题。ABH2是细胞内主
本文研究了Cartan型李代数中H型和K型系列的量子化问题,确定它们对应的各种新的量子群结构.我们构造了具体的Drinfel’d扭,利用Drinfel’d的一般量子化方法给出了特征0域上广义Hamiltonian代数的一般量子化.研究了他们的整形式的量子化,然后通过模约化和基变换技术,我们得到了特征p域上限制包络代数u(H(2n;1))的量子化.它是p-截断多项式环上非交换非余交换的Hopf代数,
高光谱是目前遥感技术发展的一个前沿,已被成功应用于许多领域中。高光谱技术的广泛应用在于它能提供地物详细的光谱信息,而高光谱应用精度的提高也取决于高光谱遥感提供的地物光谱的信噪比,因此在高光谱应用之前不仅需要对空间域图像进行噪声滤波,还需要对光谱域噪声进行滤波。本文主要以航空高光谱遥感PHI数据为研究对象,对高光谱数据光谱域噪声的检测、分析,高光谱数据信噪比的计算,光谱域噪声的去除,以及不同光谱域噪
近几年来,对于非单的C*-代数的分类研究取得了许多重要进展。H.Lin和H.Su对AT-代数进行了分类。这一工作的重要性在于,AT-代数通常可以用AT-代数通过AF-代数的扩张所得到。在本文中,我们将指出相反的结果是不成立的,存在着大量的例子说明A??-代数通过AF-代数的扩张不是AT-代数。并利用K-理论给出它们是AT-代数的一个必要条件。我们给出AT-代数一个等价定义并讨论一类更广泛的C*-代
应变是研究材料物性和结构的重要手段,同时也是调制和改良材料物性的重要方法,本文基于第一性原理计算方法,研究了稀磁半导体(Ga,Mn)As体系中的各种Mn掺杂的形成能和扩散势垒与应变之间的关系,我们得出Mn掺杂的形成能和扩散势垒是否存在线性变化,及应变对氧化物(LaAlO3/SrTiO3)界面处氧空位的形成能和电子结构的影响。本文的主要工作有以下三部分。一、应变对半导体的影响往往是通过连续弹性模型来
小鲵科为亚洲特有的有尾两栖动物。中国西部小鲵为小鲵科动物中的重要类群,阐明其各属及种间的系统发育关系,澄清其属、种分类问题,并探讨其与地理分布格局的关系,对整个小鲵科的系统演化与分布格局关系的研究具有关键性的意义。其次,由于中国西部小鲵的主要分布于青藏高原东缘和邻近周边地区,其独特的地理分布格局可为探讨青藏高原的隆升、地史变迁与相关生物类群演化历史间的相互关系提供有价值的线索。此外,中国西部小鲵中
塞加羚羊(Saiga tatarica)因拥有一对通透竖直的双角,一直是我国传统中医药中著名的物种。它曾广泛地分布在中亚半干旱草原上,数量超过100万头。但是,在过去短短的十几年时间中,由于没有节制的猎杀,这种动物的数量下降了95%以上,并且破坏了种群的自然性比。而在我国,由于捕杀,早在20世纪60年代之后就没有了该种动物的野外纪录。 考虑到物种多样性保护和国药发展的需求,从1987年开始,
学位
在本文中,我们主要研究复数域及素特征代数闭域上有限W-代数和有限W-超代数结构及其表示理论的相关问题.研究成果主要有:1.有限W-代数方面的工作第一部分是对复数域上B2型有限W-代数的研究.我们通过计算得到了其具体生成元和关系式,从而完全刻画了此代数的结构.第二部分是对素特征域上限制李代数sl2的约化包络代数的中心结构的研究.本部分利用素特征域上有限W-代数的相关理论,得到了限制李代数sl2关于p
健美操是一项集体操、音乐、舞蹈为一体,结合有氧运动和无氧运动,充分展示健、力、美的体育项目。健美操可分为健身类、表演类、竞技类3种类型。健身类健美操是以锻炼身体为目的,其动作简单、音乐缓慢。表演类健美操是专门为表演设计的,其动作较快,音乐可快可慢。竞技健美操属于健美体育的范畴,是一种要求运动员2分钟内在音乐伴奏下完成高强度、连续、成套动作的体育项目,其对运动员身体素质、技术能力以及艺术表现力
期刊