【摘 要】
:
乳腺癌具有极高的发病率和死亡率,是一种对女性健康具有重大威胁的恶性肿瘤。在患者确诊为乳腺癌后,如何快速准确的针对不同的患者制定合适的治疗方案至关重要。临床上新辅助化疗正逐渐成为乳腺癌的主要治疗方式,且治疗后达到病理完全缓解的病人五年生存率很高。由于不同患者在新辅助化疗后治疗效果各异,化疗无效的患者极可能错过最佳治疗时机。因此急需一种无创式的评估和预测方法,对患者的治疗效果进行预测,辅助医生选择合适
论文部分内容阅读
乳腺癌具有极高的发病率和死亡率,是一种对女性健康具有重大威胁的恶性肿瘤。在患者确诊为乳腺癌后,如何快速准确的针对不同的患者制定合适的治疗方案至关重要。临床上新辅助化疗正逐渐成为乳腺癌的主要治疗方式,且治疗后达到病理完全缓解的病人五年生存率很高。由于不同患者在新辅助化疗后治疗效果各异,化疗无效的患者极可能错过最佳治疗时机。因此急需一种无创式的评估和预测方法,对患者的治疗效果进行预测,辅助医生选择合适的治疗方式。本文拟通过分析乳腺对比增强核磁共振图像,提取关键图像信息,达到预测新辅助化疗疗效的目的。本文的第一个工作构建了一个基于注意力机制级联的3D-UNet深度卷积网络ACUNet,用于乳腺肿瘤区域三维分割。网络充分利用三维空洞卷积的优势,扩大感受野以获取高层次的多尺度的全局背景信息;利用注意力机制确保网络在分割时的注意力主要集中在乳腺肿瘤区域,获取更多局部信息。通过结合全局和局部的特征信息,实现更好的分割效果。在测试集中最终达到了平均Dice系数0.8012,HD 7.4592,ASSD 1.3617,RAD 0.0442的指标,优于3D-UNet和3D-Vnet经典分割网络。本文的第二个工作在第一个工作的基础之上,构建影像组学研究模型,预测NAC疗效。基于第一个工作获取肿瘤分割边界,针对肿瘤区域和肿瘤周边连续的5个2mm的环形区域内,分别提取形状特征、一阶特征、灰度特征、Haralick特征、Laws特征、Co Ll AGe特征和Gabor特征,构建瘤内特征集和瘤内加瘤周的组合特征集,使用秩和检验结合最大相关最小冗余的方法构建最佳特征子集,基于LDA和SVM分类器构建预测模型。在实验设计上,本文分别针对全部的患者数据和不同分子亚型的患者数据进行了预测,最终发现在组合特征集上的预测效果比只用瘤内特征集的预测效果好,展现出肿瘤周边区域的微环境中包含大量肿瘤相关信息。测试集的预测结果如下:基于全部患者数据的预测:AUC值为0.781,准确率为0.744,敏感度和特异性分别为0.603和0.859;基于HER2+型、Luminal型、TNBC型的AUC值分别为0.810、0.886、0.738,准确率分别为0.800、0.745、0.690,敏感性分别为0.616、0.857、0.786,特异性分别为:0.806、0.727、0.733。利用瘤周特征提高性能的同时,本文还可以准确地定位特征所在区域,帮助医生了解瘤周具体哪些区域对于预测有更好的效果。最终的模型能够有效辅助医生判断患者是否进行新辅助化疗,提高治疗效率。
其他文献
板材计数无疑是每个板材生产商必然面对的问题,它事关生产商的经济利益。传统的人工计数和机械计数方法效率较低,因此研发基于机器视觉的板材计数技术,对提高板材计数精度,提高板材生产厂商的劳动生产率,具有非常重要的意义。本论文利用三种手段研究板材计数技术及方法,具体内容如下:(1)论文研究了骨架提取板材计数的方法,使用了基于最大圆盘法骨架提取方法。首先利用改进直方图均衡化进行图像增强,增强了板材线性特征;
基于可穿戴设备的人体活动识别是一个活跃而又充满挑战的研究领域,已经在医疗健康、智能监控和安全检测等诸多应用中进行了探索。随着物联网的发展和计算能力的提高,在智能设备中嵌入了各种传感器用来收集用户的生理状态。根据用户提供的运动数据信息,使计算机体系协助用户完成一些特定的工作任务。现有的一些研究方案依赖监督学习的方法,需要大量的标签化训练数据,然而精确地标注活动的开始和结束位置是一项繁重的工作。值得注
图像融合是将多个图像传感器中获得的有效信息提取并融合,从而得到信息更丰富的完整图像。多聚焦图像融合是图像融合领域的一个重要分支,由于光学传感器的景深有限,很难获得所有景物同时聚焦的图像,多聚焦图像融合可以将多幅图像进行融合,得到所有场景都清晰的图像。本文以非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)为基础对多聚焦图像融合算法进行研究,主要研究工
视觉目标跟踪算法是在给定第一帧目标的情况下,要求跟踪算法在后序帧中能克服光照、形变等因素从而持续地跟踪目标。随着深度学习技术被应用于目标跟踪领域,目标跟踪算法得到了长足的发展,但是在实际情况下跟踪算法仍然在诸多因素的影响下而鲁棒性较低。为此本文提出基于网络调制的目标跟踪算法,主要研究内容如下。(1)针对常见的匹配思路下未能使用高阶信息对物体的表观进行鲁棒性建模,而使得目标在跟踪过程中出现漂移,提出
近年来现代医学成像设备随着科技的进步得到了迅猛的发展。不同的医学成像设备能够产生不同模态的医学图像,而不同模态的医学图像能够反映出人体不同组织结构的具体信息,通过对不同的多模态图像进行信息集成,医生可以在同一张图像上观察到更多的有用信息,从而能够更好地进行疾病的检测和诊断,因此,医学图像配准与融合技术应运而生。本文对医学图像配准和融合技术进行算法研究,主要研究内容如下:(1)针对现有医学图像配准算
自然界中有许多天气现象,包括但不限于雨、雪、露、霜、冰雹等。随着科技的发展,人类出于各种各样的需要,对这些自然天气现象的观测需求也在加大。天气现象观测的终极目标一般是全天候、全气象、自动化、精确化观测,其中对露水观测而言,自动化精确观测更是成为研究的重点。本文采用机器视觉,对凝露天气现象进行自动化识别。研究了露水的形状特征在露水识别中的可能性,设计了采集露水数据的观测系统,分析了观测图像不同的预处
节理面的黏结面积对危岩体的稳定性起决定作用,同时也影响岩石的动力响应。分析节理面黏结面积与节理面刚度之间的关系,可以建立危岩体和基岩的振动幅值之比与节理面黏结面积之间的关系;再结合极限平衡理论,可以建立基于振幅比指标的危岩体稳定性计算方法。提出了共振黏结长度的概念:当岩体节理面的黏结长度达到共振黏结长度时,危岩体对基岩振动响应最大;而在共振黏结长度两侧,岩体的振幅比会随着黏结长度的改变产生相反的变
海洋蕴含各种资源,但由于水体介质对光波的吸收和散射特性,使得水下能见度低,对水下资源的勘测工作难度极大。传统的可见光成像探测技术在水下成像领域中的应用较为广泛,但传统的光电探测技术获取到的水下图像退化严重、模糊不清,图像包含的信息较少,早已不能满足研究学者们的需求。获取到对比度高、分辨率高的水下图像已经成为该领域亟需解决的问题。与传统的可见光成像相比,偏振成像能减少杂散光、散射光的影响,可在一定程
物联网催生了大量具有严格延迟要求的应用,例如车联网,智能农业,医疗监测系统等。这些应用对信息的时效性提出了很高的要求。如何度量信息的时效性成为了目前的热门研究话题。信息年龄(AoI)地提出弥补了延时和吞吐量在度量信息时效性上的不足,并在排队模型,排队策略以及多源多径等角度进行了研究。对于在某些重要时刻,则需要通过决策时刻年龄(AuD)来表征决策时刻信息的时效性。本文通过模型构建、模型优化、数值分析
作物株高的测量是农作物自动观测中的重要环节,它能直接反映作物的生长情况。本文将图像处理和FPGA硬件架构结合起来实现自动的实时作物株高测量系统,并将其广泛应用于农作物或景观植物的自动观测中,通过测量的株高信息反馈植物生长态势,指导进行人工干预的时机。本系统通过摄像头采集标尺图像,通过识别未被遮挡的标尺实现作物株高测量。本文首先研究了标尺图像识别及株高测量的具体算法并对其进行仿真验证;然后设计实现了