基于CNN的农作物病虫害识别系统设计

来源 :重庆三峡学院 | 被引量 : 0次 | 上传用户:chunxi1208
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
农作物图像分类作为农业发展中亟待解决的难题之一,能够对可见光图像中的普通农作物进行快速准确的识别是现今实现智慧农业的重要手段。随着社会的不断发展和科学技术的不断进步,人工智能、机器学习和大数据技术得到了广泛的应用。图像识别技术在农业方面得到了高度的发展与应用,它在农业领域涉及了视觉模拟,农作物病虫害监控,农产品分类等方面,它是识别农作物产品、提早发现各类病虫害的重要手段。针对多数叶片可见光图像的分类问题,本文提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)的农作物叶片识别分类方法。该方法基于经典的RESNET50模型做出改进,通过与Center loss及Softmax loss进行结合,使得卷积神经网络的损失函数减小、模型的鲁棒性得到优化,成功提高了模型的特征学习效果与分类准确性,使农作物叶片病虫害的图像识别方法得到了很大改进。首先,对实验所需农作物数据进行采样收集,再利用图像分割技术如基于阈值的方法、基于边缘检测方法和基于区域的分割方法,对采样图像进行预处理。其次,详细地介绍了卷积神经网络所应用到的各类网络模型、损失函数、以及优化算法,完成对系统的总体设计以及代码编写。最后,通过实验结果进行测试,证明了该算法针对网络的优化是非常有效的,即与传统的网络模型相比本文所提出的学习方法采用Focal loss函数和Adam优化算法对模型进行优化,具有更为优秀的分类性能和泛化能力,能够更加有的效实现对农作物病虫害的识别。
其他文献
学位
学位
曲率测量技术在建筑结构健康监测、地球物理、地质灾害监测等领域起着举足轻重的作用。目前,已经有很多种类的光纤曲率传感器,比较常见的有光纤布拉格光栅曲率传感器、长周期光纤光栅曲率传感器、光纤马赫-曾德尔干涉仪曲率传感器等。这些光纤曲率传感器各有优缺点,第一种光纤曲率传感器分辨率高,但是灵敏度较低;第二种光纤曲率传感器灵敏度比前者高,但是对外界环境折射率敏感;第三种光纤曲率传感器灵敏度更高但制作相对困难
我国是水果生产大国,每年各种水果的产量数以千万吨,因此,果业已成为我国农业发展的重点之一。但目前,我国的水果产业,尤其是在水果的识别和分拣阶段,由于对水果的自动识别分类技术并不成熟,往往还是通过人工的方式来完成识别分拣工作,这种方式不仅增加人力成本而且工作效率也不高。但是通过计算机视觉中的卷积神经网络(CNN)这一技术在农业领域中的运用,为解决以上这些问题提供了可能。针对在水果识别分拣过程中存在的
无线传感器网络因其网络可拓展性强、易于维护和自组织等特点成为当今世界重要的技术之一。但无线传感器网络中节点能量的有限性且更换供能模块难度较大,网络的生存时间一直以来是制约无线传感器网络发展的关键,而且在网络通信后期会出现由于部分节点失效死亡导致网络的覆盖范围急速下降的问题,所以如何提高无线传感器节点的能量利用率和减缓后期网络覆盖率急速下降成为近几年来学者们研究的热点之一。针对无线传感器网络中出现的
微小位移传感在诸多领域都起着至关重要的作用,例如结构健康监测领域、滑坡监测以及微观制造领域等。光纤表面等离子体共振(Surface Plasmons Resonance,SPR)传感器作为一种新型的高精度、高灵敏度、抗干扰的光纤传感器,已普遍应用于生物医学、食品安全和化学试剂检测等领域。然而,其在微位移测量方面的研究和应用却十分匮乏,在多维微位移检测方面的应用更是寥寥无几,且目前已提出的光纤SPR
声音无处不在,人听到声音后,不断地有意识地或潜意识地处理和理解这些音频,从而向我们提供有关周围环境的信息。智能环境声音分类是在众多实际应用中不断发展的研究领域。尽管在音频领域(例如语音和音乐)进行了大量研究,但对环境中的声音进行分类的工作相对较少。而利用深度学习对声音图像化处理后的分类还未出现,这就引出了利用卷积神经网络对随着时间而发生的离散声音信号进行分类的研究。本研究是将深度学习技术应用于环境
随着近年来物联网与信息传感技术的快速发展,以及我国乡村振兴战略正式提出的发展背景,现代设施农业迎来了新一轮发展浪潮。截止于2018年末,我国温室大棚占地面积为196.37万公顷,占全球80%以上,位居世界第一。总产量虽高,但由于智能化程度不高、管理不便、成本高,致使我国大棚亩产量仅为发达国家的1/8,总体生产效益低。国外温室大棚测控系统由于起步较早,自动化程度较高,但设备系统庞大、直接引进成本高,
图像配准的目标是将来自不同时间、不同方位,或者不同的传感器作用下拍摄的同一场景的两幅图像或多幅图像进行映射、对齐、叠加或者拼接成功的过程。一直以来,图像配准都是计算机视觉、模式识别、医学图像处理和遥感领域的热点。迄今为止,图像配准技术还在不断的完善和优化,当前算法在某些性能上的表现越来越不够理想,那么如何提高运算效率、加强技术的稳定性依旧是当前亟待优化的问题。本文主要围绕基于特征点的图像配准算法展
卷积神经网络(CNN)在图像识别领域的应用已经日益成熟,但随着物联网时代的到来,数据量呈现指数级别的飞速增长,庞大的训练数据需要耗费大量的计算资源和训练时间,传统的集中式方法不适合解决这些大规模优化问题。一方面,集中式框架受到性能限制,如较高的通信和计算要求、单点故障以及有限的灵活性和可扩展性。另一方面,将以分布式方式收集的数据传输到中心节点的成本过高,且可能造成敏感信息泄露。因此,研究分布式优化