论文部分内容阅读
随着化石能源的日益枯竭和环境污染的不断加剧,风能、太阳能等新能源的开发和利用成为当务之急。而作为连接电网和以新能源为代表的分布式发电系统的纽带,并网逆变器具有广泛的应用场合。无死区逆变器从根源上解决了传统桥式逆变器桥臂直通的问题,可以避免桥式拓扑死区引入的低次谐波,有利于提高电能质量。在大功率逆变场合无死区双降压并网逆变器结构简单,二极管可以单独进行优化设计,通过合理地设计滤波器参数以及改善控制策略可以有效地提升电能质量和效率,是值得研究的内容。本文首先介绍了三相桥式逆变器死区效应的消除方法。从控制的角度上,改进控制策略,可以进行死区效应补偿。从拓扑的角度上,选择无死区拓扑,可以从根本上消除传统桥式拓扑桥臂直通的现象。以三相双降压式逆变器和Z源逆变器两种无死区拓扑为例,分析了三相双降压式逆变器的工作原理,建立了其数学模型并给出其解耦控制策略,介绍了空间矢量脉宽调制方法;分析了Z源逆变器的升压原理,研究了两种逆变器的防直通网络的设计原则。对桥式电路的死区效应进行了分析研究。分别建立有死区时间的三相桥式逆变器以及无死区的双降压式逆变器的谐波计算模型,对LCL滤波器进行了分析研究,建立了进网电流THD的开环和闭环修正计算模型。针对三相双降压拓扑桥臂输出侧电感较多、体积重量偏大的问题,桥臂侧采用耦合电感,减小体积数量,在此基础上对双降压逆变器LCL滤波器进行了参数的优化设计。最后设计完成了全数字控制的18k VA三相桥式和双降压逆变器原理样机,介绍了硬件和软件的设计,并以此样机为平台进行了并网实验,实验结果与理论和仿真分析相吻合,有效地验证了分析的正确性。