论文部分内容阅读
由于高发光效率、节约能源、长寿命、环境友好、小体积及不含汞,白光发光二极管近十年来吸引了研究者们极大的注意。主要有两种方法制造白光发光二极管。目前最常用的方法是复合近紫外或者蓝光发光二极管芯片与光转换荧光粉。本论文首先详细总结了这些光转换荧光粉。由于这些荧光粉具有如差的化学稳定性、低效率或者较高的合成条件,因此需要研究新的荧光粉体系或者制备方法。本文中,通过高温固相法在不同的合成条件制备了Eu2+和Mn2+共掺杂的Ba2Mg(B03)2、Eu2+掺杂的氧磷灰石结构氧硅酸盐Mx-yLn10-xSi6027-x/2 (M= Mg, Ca, Sr, Ba, Ln=Y, La, Gd)及其氧氮化物、Eu2+掺杂的Sr2Si5N8,详细研究了它们的光致发光性质。本文通过XRD分析了Eu2+和Mn2+共掺杂的Ba2Mg(B03)2的相结构。此荧光粉在365nm光激发下发射橙红光。通过光致发光光谱和发光衰减时间分析,详细研究了Mn2+对发光性质的影响。结果表明,Mn2+不作为发光中心存在,但是使得Eu2+的长波发射纯化,因此通过改变Mn2+浓度可以获得可调的橙黄至橙红发射。通过烧成条件研究,成功制备了Eu2+掺杂的氧磷灰石结构的化学式为Mx-yLnlo-xSi6027-x/2的氧硅酸盐荧光粉。研究了烧成温度对相结构和光致发光性质的影响,获得了优化的烧成温度。通过光致发光光谱详细研究了M2+及其含量、Ln3+和Eu2+浓度对发光性质的影响。这些荧光粉具有范围从280-450nm的宽的激发带,在365nm光激发下发射从蓝绿到橙光。讨论了Eu2+在不同晶格位置的发射,结果表明,短波和长波发射带分别归因于Eu2+在氧磷灰石晶格中的4f和6h位置。也讨论了Eu2+在两个晶格位置的能量传递效应。通过SEM研究了荧光粉颗粒的形貌和颗粒尺寸,结果显示,其具有结晶完整的超细粉体颗粒。引入N3-通常导致Eu2+发射峰红移,因此,在NH3气氛下制备了上述氧硅酸盐荧光粉。通过O/N含量分析、XRD和光致发光光谱,研究了Sr的原料对氮含量、相结构和发光性质的影响。结果表明,使用SrCN2:Eu比SrCO3作为Sr的原料所制备的荧光粉具有更高的发光强度。通过XRD谱,详细研究了SrCN2:Eu作为原料时烧成温度对荧光粉相结构的影响并讨论了固相反应过程。通过测试69-325K范围内温度对发光光谱的影响研究,讨论了Eu2+的发射机理。结果显示,可以观察到两个发射带,且随着温度增加长波发射峰蓝移但短波发射峰位置不变,两个发射峰均发生了浓度猝灭,讨论了可能的浓度猝灭机理。Sr2Si5N8:Eu2+是一种白光LED用性能优异的红色荧光粉,本文应用SrCN2:Eu作为原料在NH3气氛下通过较低的烧成温度合成了此氮化物荧光粉。通过XRD、O/N含量分析和发光光谱研究了合成的Sr2Si5N8:Eu2+荧光粉的晶相、氮含量和发光性质,与文献方法相比其发射峰蓝移,讨论了蓝移的原因。由于在制备前述氧氮化物和氮化物过程中SrCN2:Eu2+发挥了重要作用,因此通过高温固相反应在NH3气氛中制备了不同含量Eu2+掺杂的MCN2(M=Ca, Sr),通过XRD谱研究了它们的相结构。由于其潜在的光致发光能力,详细研究了其光学性质和在低温下的发光光谱。反射光谱测试结果表明SrCN2的禁带宽度为4.56eV,在77K温度下SrCN2:Eu2+发射峰波长为610nm的宽带光谱,其激发峰范围为350-520nm。随着测试温度增加,发射强度显著减小,表明SrCN2:Eu2+的猝灭温度低,探讨了温度猝灭机理。