【摘 要】
:
为了兼具轮式机构的高速性和足式机构的灵活性,本文设计出一款可在轮式形态和足式形态间自由切换的无人变胞汽车。作为一种新型的轮腿式机器人,其形态切换具有快速和全局的特点。为了保证其在驻车工况下快速全局重构运动的平顺性和稳定性,规划了各关节的运动轨迹并建立了此过程的运动学和动力学模型。针对其直线行驶工况下的快速全局重构运动,建立了非线性动力学模型,并对其稳定性进行了分析。具体的工作内容如下:首先,对无人
【基金项目】
:
国家自然科学基金项目“无人变胞车辆重构过程分析及重构稳定性关键技术研究”(项目编号:51875148);
论文部分内容阅读
为了兼具轮式机构的高速性和足式机构的灵活性,本文设计出一款可在轮式形态和足式形态间自由切换的无人变胞汽车。作为一种新型的轮腿式机器人,其形态切换具有快速和全局的特点。为了保证其在驻车工况下快速全局重构运动的平顺性和稳定性,规划了各关节的运动轨迹并建立了此过程的运动学和动力学模型。针对其直线行驶工况下的快速全局重构运动,建立了非线性动力学模型,并对其稳定性进行了分析。具体的工作内容如下:首先,对无人变胞汽车的组成部分进行了分析和介绍,阐述了其重构运动的阶段规划。针对其驻车耦合重构运动过程,基于平顺性对各关节运动进行了轨迹规划,在此基础上分别利用旋量法和D-H参数法建立了该过程的正运动学模型并进行了仿真分析。基于正运动学模型求解了其奇异位形并根据零力矩点稳定性判据分析了该过程的稳定性。针对其脚着地过程,基于已优化设计的无人变胞汽车支撑态脚底位姿,根据P-K子问题方法求解了该过程的逆运动学,从而得到支撑态最优落脚点的各腿部关节的展开运动规律。其次,在运动学基础上根据旋量理论推导出拉格朗日方程并建立了无人变胞汽车驻车耦合重构运动的动力学模型。对满足各关节平顺性运动所需的驱动力矩进行了仿真分析。随后,针对无人变胞汽车直线行驶耦合重构运动工况,将无人变胞汽车视作质心改变的质量块并基于非线性足轮建立了非线性振动动力学模型。根据最大Lyapunov指数谱图、分岔图、相平面图、庞加莱截面图等非线性动力学范畴的稳定性分析手段研究了路面正弦激励对该非线性振动系统稳定性的影响。经研究发现当路面正弦激励的角频率和振幅分别在某一数值附近时,该非线性振动系统将会进入混沌运动状态,从而变得不稳定。最后,对试制出的无人变胞汽车样机进行了驻车耦合重构运动学实验研究。通过实验和仿真数据的对比,得出了无人变胞汽车在耦合重构过程中的水平性、平顺性以及稳定性较好的结论。
其他文献
超级电容器具有功率密度高、充放电速率快、循环稳定性好等优点。然而其能量密度较低的缺点严重制约了其大规模商业化应用。电极材料是影响超级电容器电化学性能的关键,因此开发具有高比电容且循环稳定性高的电极材料尤为重要。基于法拉第反应的赝电容材料具有较高的比容量。其中,镍钴基过渡金属碱式碳酸盐由于其独特的晶体结构,电解质离子易于嵌入和扩散到材料内部进行快速的氧化还原反应,因此具有出色的理论电容,在能量转换和
燃料电池汽车是新能源汽车中的重要类型,利用燃料电池系统和辅助能源共同输出能量以驱动车辆前进,具备能量转化率高等优点。燃料电池汽车混合动力系统的功率分配是整车控制的重要环节,良好的功率分配控制策略对整车的燃油经济性和整车寿命将产生非常重要的影响。本文以燃料电池汽车为研究对象,搭建混合动力系统模型,基于特性分析采用优化算法制定有效的功率分配控制策略。具体的研究内容如下:(1)本文燃料电池车型采用的架构
在传统汽车结构耐撞性优化设计研究中常运用数值优化方法进行确定性优化设计。然而确定性优化结果往往接近约束边界,当设计变量受到不确定因素影响时导致确定性优化结果不可靠。因此,在兼顾耐撞性与轻量化的整车设计中,可靠性设计显得尤为重要。前人的研究表明,Chebyshev区间方法在提升设计解可靠性方面发挥了很大的作用。因此,将Chebyshev区间方法与传统整车结构耐撞性优化方法相结合提升设计解可靠性具有一
为改善环境污染问题以及化解能源危机,全球各国都在大力发展新能源汽车,其中电动汽车由于技术相对成熟,近年来率先在市场上得到普及。而随着电动汽车的普及,相应的配套基础设施也得到了迅猛发展。结合智能电网的发展,V2G技术应运而生,因此研究能够实现能量双向流动的电动汽车充放电系统具有深远的意义和广泛的应用前景。本文以直流快充的AC/DC变换器系统作为研究对象,旨在实现V2G功能的前提下提高系统的充放电效率
随着社会进步和经济发展,汽车保有量不断增长,随之而来的是交通事故频繁发生。由驾驶员疲劳驾驶而导致车道偏离是发生交通事故的常见原因,以车道保持为代表的横向辅助系统是避免车道偏离的有效途径。为解决以上问题,本文对基于疲劳检测的人机协同车道保持进行研究,提出一种基于面部特征识别的驾驶员疲劳检测方法并与人机协同车道保持控制相结合,主要完成以下工作:首先,本文提出了一种基于面部特征点识别的驾驶员疲劳检测方法
近年来,资源短缺与环境污染等问题愈发突出,在可持续发展的大背景下,新能源汽车的发展正在逐步成为汽车行业的一个趋势。锂离子电池作为新能源汽车的重要动力来源之一,在新能源汽车蓬勃发展的大环境下,其各项特性地研究也越来越受到重视。动力锂离子电池的荷电状态(State of Charge,SOC)是用来描述电池所剩电量多少的物理量,它与汽车的续航里程直接挂钩。此外SOC对于动力锂离子电池的充电方式的选择、
当前人类社会面对的严重的环境污染和能源紧缺问题,寻找清洁可持续的能源是当前的研究热点。而交通运输业则是能源变革的关键行业之一,其中氢燃料电池混合动力汽车由于其清洁、可持续、续航长的特点,受到了广泛的关注。质子交换膜燃料电池是应用在汽车上最广泛的一种,其具有比功率高、启动快、工作温度低的特点。在燃料电池混合动力汽车中增加辅助能源,一方面可以在车辆大功率工况时提供额外的能量满足车辆行驶,另一方面可以对
近年来,锂离子电池因比能量和比功率大、循环使用寿命长、安全性高等优点,被广泛作为电动汽车动力源。而准确地掌握动力电池荷电状态(state-of-charge,SOC)有助于预测续驶里程、可有效控制电池过度充放电进而延缓电池老化。然而,目前主流算法大多只关注于改善个别SOC估计指标,忽略对提高其综合估计性能的研究。因此,如何能够在兼顾多项估计指标的基础上实现SOC实时高精度预测仍然是当今学术界重要研
横置板簧悬架能有效的减轻汽车簧载质量,为电动汽车提供更多的后排空间,是目前车辆悬架领域的研究热点。但是,横置板簧具有整体性,汽车从生产出厂后刚度就无法改变。随着簧载质量的变化,单一的刚度无法满足汽车悬架的平顺性和操稳性性能。为能够根据簧载质量的变化,相应改变横置板簧刚度,本文提出并实现了一种横置板簧变刚度的调节机构。此机构通过改变副车架力臂的长短来实现变刚度的目的。因为悬架不仅要考虑刚度,阻尼也要
无人驾驶扫地车可用于公园、社区和工厂等不同的场景,因此无人驾驶扫地车在工程应用上前景广阔。本文依托于某企业提供的铰接式无人驾驶扫地车实车平台,针对铰接式无人驾驶扫地车特定场景下路径规划、循线行驶、定速巡航、跟车行驶、自主换道、自主超车、路口通行、主动避障、红绿灯启停、自动启停与制动以及定点停车等功能,设计无人驾驶方案,构建软硬件平台架构,并对无人驾驶铰接式扫地车运动规划关键技术进行了轨迹规划和速度