【摘 要】
:
二硫化钼是重要的固体润滑材料及半导体材料,在柔性电子、透明晶体管、生物等一些先进领域也表现出潜在的应用前景。钼精矿是制备二硫化钼的主要原料,金属元素如砷、锡、铅、铋、锌、铁等的硫化物在辉钼矿浮选制备钼精矿的过程中与二硫化钼一起选出,需要在后续工艺中除去。现行化学浸出法除杂工艺存在成本高,流程长,污染严重等缺点。本文结合真空冶金的优势提出了真空蒸馏、真空氯化的方法分离杂质并提纯二硫化钼;结合氧化浸出
论文部分内容阅读
二硫化钼是重要的固体润滑材料及半导体材料,在柔性电子、透明晶体管、生物等一些先进领域也表现出潜在的应用前景。钼精矿是制备二硫化钼的主要原料,金属元素如砷、锡、铅、铋、锌、铁等的硫化物在辉钼矿浮选制备钼精矿的过程中与二硫化钼一起选出,需要在后续工艺中除去。现行化学浸出法除杂工艺存在成本高,流程长,污染严重等缺点。本文结合真空冶金的优势提出了真空蒸馏、真空氯化的方法分离杂质并提纯二硫化钼;结合氧化浸出深度除杂工艺,探索环保、高效、简便的二硫化钼提纯工艺。具体研究内容及进展如下:(1)基于钼精矿中金属硫化物的饱和蒸气压、真空分解过程的吉布斯自由能和平衡分压的计算,分析了真空蒸馏除杂的可行性。结果表明:相同温度下,As2S3、SnS2、PbS、Bi2S3、ZnS的蒸气压远大于MoS2,可以通过真空蒸馏的方法除去;而FeS2、CuS加热时易分解为FeS、Cu2S,不能通过真空蒸馏除去,Bi2S3加热分解为铋蒸气和硫蒸气很容易挥发除去。(2)开展了二硫化钼真空蒸馏的实验研究,结果表明:5-15 Pa,蒸馏温度为1373 K,蒸馏80 min的条件下,杂质的脱除效果最佳。对冷凝物进行检测分析,原料中含量很低的PbS通过真空蒸馏被进一步蒸出,而含量相对较高的杂质元素Na、Al以氟化物形式挥发分离。二硫化钼的纯度由97.01%提高至99.18%。(3)开展了钼精矿真空蒸馏的实验研究,结果表明:在5-15 Pa,蒸馏温度为1373 K,蒸馏80 min的条件下,杂质的脱除效果最佳。对收集的冷凝物进行检测分析,其中铅、锌、铋元素以硫化物形式挥发,此外还有少量氧化钼挥发。钼精矿品位提高约2%。(4)对金属氯化物的挥发性、硫化物与氯化钙在真空条件下反应的热力学进行了分析。结果表明10 Pa时,FeS可以被氯化成Fe Cl2挥发除去。钼精矿氯化焙烧除铁实验研究表明,1 Pa时,氯化钙与钼精矿质量比为1.5:1,温度为1123K时,Fe含量可降至0.43%。(5)开展了钼精矿蒸馏残留物氧化浸出的实验研究,结果表明:采用双氧水在反应釜中浸出钼精矿蒸馏残留物可进一步脱除铁、铜,随双氧水浓度的升高,去除效果越好。双氧水的浓度为30%时,铁、铜含量分别降至0.35%、0.0094%。
其他文献
锌电积过程是湿法炼锌最重要的工序,占锌生产总能耗约80%,近年来国家大力提倡节能降耗,对改善电积工序达能耗降低提出新要求。随着高品位锌矿储量逐渐枯竭,多种多样的杂质离子及添加剂进入硫酸锌浸出液中,如浸出过程带入的单宁酸、氟离子、氯离子等对锌电积过程节能降耗及锌品质产生不利的影响。因此,本论文通过电化学分析、锌电积实验及中试验证、阴极腐蚀实验、锌成核规律等系列手段,系统研究了单宁酸(40-120 m
高硫铝土矿是一种难处理的铝土矿资源,拜耳法赤泥是拜耳法生产氧化铝过程中的一种有害的高碱度固体废渣。高硫铝土矿和拜耳法赤泥的综合利用一直都是国内外研究的热点。如果能够解决高硫铝土矿中硫含量过高的问题,并同时分离高硫铝土矿和赤泥中的铁铝等有价金属,高硫铝土矿和拜耳法赤泥的综合利用有利于我国的铝工业和钢铁工业的发展,促进矿产资源的有效利用。本文对高硫铝土矿和拜耳法赤泥里面的氧化铝和氧化铁的分离进行研究,
化工分离是现代化学工业中的重要组成部分。传统的分离过程,每年需要消耗世界能源的10-15%。因此,研究低能耗的替代分离技术十分必要。膜分离技术由于在分离过程中不涉及任何的相变化,能效高,且易于实现连续化等特点,是一种很有前景的分离技术。然而,目前所使用的膜材料多为聚合物膜,此类膜机械强度较差,容易受到酸性气体的腐蚀,且由于膜材料自身性质的影响,其分离性能会受到“trade-off”效应的限制,提高
金刚石具有优异的光学、力学、热学、电学性能,是一种典型的多功能材料,在航空航天、能源、精密加工等高新技术领域有着极佳的应用前景。然而,天然金刚石非常稀有且价格昂贵,多用于首饰等奢侈品消费领域。高温高压法制备的金刚石多为颗粒状,缺陷及杂质较多,多用于磨削领域,极大地限制了金刚石在高新技术领域的应用。而化学气相沉积(CVD)法可实现在较低的生产成本下制备出大尺寸高品质金刚膜,引起了各个国家的高度重视。
作为我国乃至全世界各类基础工程建设中常出现的一类工程,岩质边坡工程其自身具有的潜在危害性一直被专家学者所重视。然而传统、常用的岩质边坡稳定性评价体系存在一定主观性和局限性,无法全面、客观的评价边坡工程稳定性。为此,本文以个旧市对门山岩质高边坡为依托,通过定性分析、定量计算与可靠度分析法相结合的一套新体系全面对边坡稳定性作出评价。主要研究内容与结论如下:(1)通过FCM聚类法确定了岩体优势结构面分组
Pb-Ca-Sn系阳极作为铜电积的主要阳极材料得到了迅速地发展,但是依然存在着阳极电位高和耐腐蚀性差等缺点。因此,为了降低能耗减少阳极腐蚀,本文从确定Mn2+和Co2+离子影响机理、制备工艺优化(包括优化淬火热处理温度和浇铸厚度)和控制变质剂添加量等三个方面对Pb-Ca-Sn阳极进行改性。首先,Mn2+和Co2+离子对Pb-Ca-Sn阳极在Cu SO4-H2SO4溶液体系下影响发现:电解液中Mn2
闪烁体是一种能够将X射线或者其他高能带电粒子(如α粒子、β粒子)转化为紫外或可见光的光-光功能转换材料。目前,闪烁体在基础应用研究和辐射探测领域发挥着至关重要的作用,被广泛应用于高能物理、工业无损检测、材料研究以及医学成像等领域。传统的无机单晶(如Gd2SiO5:Ce3+、Cs I(Tl)、Bi4Ge3O12(BGO))因其结构的稳定性和优异的光学闪烁性能从而成为商用的闪烁体材料。然而,单晶的制备
在推进信息化与新能源发展的今天,多晶硅作为半导体与光伏行业的核心原材料需求量与日俱增。改良西门子法以成熟的工艺与简单的设备成为多晶硅的主要生产工艺,然而使用该工艺进行生产时能耗过高是目前其面临的主要问题。多晶硅沉积中传热过程对生产总能耗产生主要影响。本文针对改良西门子法生产过程中能耗过高的问题,开展了多场耦合作用下多晶硅还原炉能量耗散机理研究。基于计算流体力学理论(CFD),使用仿真模拟手段,通过
羟基磷灰石晶须(HAw)具有优异的化学稳定性、良好的生物活性和骨传导性,被普遍用于陶瓷材料的增韧。但是,想要制备出一种既有良好力学性能和优良的生物活性,造价又较为低廉的牙科玻璃陶瓷复合材料仍然是一个挑战。本文采用溶胶凝胶法制备出Si O2-Na2O-K2O-Ca O-P2O5-Li2O-B2O3-Sn O2基生物玻璃陶瓷粉末,可降低烧结温度,并在粉末中加入不同含量的羟基磷灰石晶须(HAw)、球形氧
电极是有色金属电解的核心部件,其选择与制备在湿法冶金行业中至关重要。本文从电极基体材料选择和结构设计入手,结合前期实验室应用等离子喷涂技术制备的Al/TiB2+Ti4O7复合涂层材料为基体。通过孔隙率的测量,发现采用等离子喷涂法制备的复合电极材料的喷涂功率为36k W,送粉量为30g/min,喷涂距离为105mm,氩气流量为2.6m3/h的条件下,极大降低了电极表面双层结构中的电荷电阻,从而加快了