论文部分内容阅读
本文通过研究铸造及热处理工艺对球墨铸铁的组织及力学性能的影响,确定最佳的下贝氏体球墨铸铁磨球制备工艺;并通过冲击磨损和腐蚀磨粒磨损实验,结合球磨机磨球运动学分析,研究了下贝氏体球墨铸铁在不同服役条件下的磨损行为及机理;结合球磨机磨球运动学分析磨球的最佳抛落轨迹及最大冲击能;综合对比下贝氏体球墨铸铁及另外三种耐磨材料的冲击磨损和腐蚀磨粒磨损失重特性,并提出了四种耐磨材料的最佳服役条件。研究结果表明:球墨铸铁的石墨形态及分布与球化孕育工艺密切相关。使用2.2%球化剂和0.8%一次孕育剂在1450℃球化处理90s,并在浇铸时冲入1.2%的二次孕育剂,所得球墨铸铁中石墨尺寸、形态及分布最佳。近一步分析发现,尺寸细小且分布均匀的球状石墨对金属基体的割裂作用小,且咬合力较高,在其晶界处优先形核的下贝氏体细小而均匀,从而显著提升球墨铸铁的塑性变形协调能力;通过Jominy顶端淬火实验发现,材料顶端依次经历了薄膜沸腾、泡核沸腾及自然对流三种热传导机制。由于冷却速率的差异,随着淬火高度的增加,材料组织依次经历了马氏体、贝氏体、珠光体及铁素体转变;热处理结果表明:860℃温度下保温2h后采用20℃的饱和硝酸盐和亚硝酸盐混合介质进行连续冷却,并在250℃下回火2h,所得的下贝氏体球墨铸铁磨球表现出表层高硬度,内部高韧性的性能梯度特征;磨损实验结果分析发现,下贝氏体球墨铸铁的冲击磨损机制先后经历了犁沟、微切屑及疲劳磨损,其腐蚀失重机制主要包括化学腐蚀、电偶腐蚀和犁沟磨损机制。载荷对冲击及腐蚀磨损失重率的影响显著,载荷的增大将显著提高材料的失重率。不过,在一定载荷的作用下,表层组织的耐磨性会随着残余奥氏体的马氏体相变而提高;对比几种耐磨材料的磨损特性发现,下贝氏体球墨铸铁适用于多种实际服役条件,包括冲击载荷较高、介质酸性适中的大型球磨机。高铬铸铁适用于冲击载荷较小、碾磨介质较硬、介质酸性较强的中、小型球磨机。低铬磨球适用于中、小型干式球磨机。而70Mn马氏体钢适用于大、中型干磨球磨机。