【摘 要】
:
由于市场的需求和自动化领域的迅猛发展,工业机器人的使用和进步在控制行业已经是不可避免的潮流。但是相对于国外的发展情况,我国在这方面有着不小的差距,主要是国外垄断着他们的完整的控制产业链,并且企业和机构研发的工业机器人控制系统都采用专用的控制器,使系统缺乏通用性、灵活性。这两个主要因素直接导致了我国工业机器人的提高举步维艰。所以,设计一种具有可重构性的、开放性的控制系统具有重大科研意义和广泛的市场价
论文部分内容阅读
由于市场的需求和自动化领域的迅猛发展,工业机器人的使用和进步在控制行业已经是不可避免的潮流。但是相对于国外的发展情况,我国在这方面有着不小的差距,主要是国外垄断着他们的完整的控制产业链,并且企业和机构研发的工业机器人控制系统都采用专用的控制器,使系统缺乏通用性、灵活性。这两个主要因素直接导致了我国工业机器人的提高举步维艰。所以,设计一种具有可重构性的、开放性的控制系统具有重大科研意义和广泛的市场价值。在这个背景下,本文将使用PLCopen标准对六自由度工业机器人控制系统进行分析与设计,并实践了机器人所需的基本功能模块,为之后的相关性研究和探索提供了部分基础。主要研究内容如下:在MATLAB仿真平台上传入六自由度机器人的结构参数并使用D-H方法进行建模,之后推导其正逆运动学矩阵和位姿表达式,并采用数值解法求解机器人六轴的关节角度,最后验证了推算结果的正确性。对运动产生的轨迹进行规划,首先分析和推算了传统的多项式插补算法,以及提出一种基于分段的拟合轨迹优化算法,在仿真和误差分析之后,结果表明上述算法均基本达到设计的目标。基于市场情况,分析总结出机器人控制系统的设计方案。本文主要以实验室已有的六自由度工业机器人为实验主体,基于嵌入Twin CAT(The Windows Control and Automation Technology)的visual studio编程环境并采用基于PLC控制的解决方案,配合使用德国倍福CX2020系列控制器以及传动科技公司旗下的CDHD伺服驱动器产品,对机器人系统进行设计和实现。对于硬件PC机、控制器、伺服驱动器之间采用一主多从的控制方式,并且为了后续的维护和检修设计了它们的电气接线图。而对于软件方面,为了发挥运动控制程序的封装性、可重构性和通用性,在编写机器人功能程序时主要采取模块化的设计思想和ST(Structured Text)的文本编程语言,程序设计包括有正逆运动学、单轴运动、直线运动、圆弧运动、通讯模块等等。之后结合实物,并且为了保障上下位机的及时、准确通信,采用了工业以太网Ether CAT通讯协议,最后通过实际上机调节和操作成功实现了上下位机的通讯。本文在最后对设计的控制系统进行功能实践,验证内容主要为机器人正运动测试、回零运动测试、点动测试、直线运动测试、圆弧运动测试。测试结果基本达到预期目标,总体设计的机器人控制系统功能较为完善。
其他文献
在这个计算机技术不断更新换代的时代,人们给计算机赋予了视觉的功能,用以代替人眼进行观测。未来几年机器视觉在工业领域的应用将会越来越广泛,尤其是耗费大量人力的人工检测流程,在工业领域使用机器视觉能够提升产品质量、提高检测速度等。在硅钢片焊缝缺陷检测流程中,采用人工检测的方式容易受到检测人员疲劳和身心健康的影响,同时人工检测比较耗时,每一次的检测标准又无法统一,因此使用自动化检测系统来代替人工检测已经
随着一批新产业新技术的发展,例如5g通信技术的兴起,对高品质注塑产品的需求也与日俱增。注塑业是标准的离散型制造业,完整的产业链包括原料的生产、运输、储存,再到注塑工厂生产成型件。而原料的质量是影响注塑成品质量的关键因素,所以加强对注塑原料质量检测是非常必要的。注塑原料的检测是一项系统的工作,检测手段包括目视、量测及试生产。其中目视主要针对注塑原料的表面缺陷及尺寸缺陷,但是传统的人工目视存在诸多缺点
在信息爆炸式激增的大数据时代,字典学习模型受到广泛地关注,且已被成功地应用于信号后续处理的各个领域,比如图像处理、图像融合、视频关键帧提取等。现有的字典学习算法主要基于0L稀疏范数、凸松弛1L稀疏范数约束字典学习模型。0L稀疏范数的不连续性会导致其优化求解极具复杂性。此外,由于1L稀疏范数是0L范数的凸松弛近似,其约束的字典学习存在稀疏度弱、估测值偏差较大等问题。因此,针对现有基于0L稀疏范数和1
网络化系统是计算机、通信和控制快速发展以及相互作用的产物,相比于传统的控制方案,网络化系统的模式结构更为复杂,空间分布更为广泛,性能更加优异。网络化系统是实时系统,主要分为被控对象、传感器、控制器和执行器四个部分,其信息传输通过网络建立连接。网络化系统具有成本低、安装和维护简单、可靠性高等优点,是其能够在多个领域广泛应用的重要因素。然而,通信网络的引入使得系统在信息交流过程中,通常会出现带宽受限、
当今信息化时代中,社会各个领域所产生的数据呈现井喷式增长,如何在海量且复杂的数据中挖掘出潜在具有价值的信息已经成为了一个相当热门的研究课题,Kmeans算法作为数据挖掘中常用的聚类算法,其算法原理简单且有着比较高效和准确的聚类效果,然而该算法在处理大规模数据时迭代速度较慢,同时初始聚簇中心选取也会对聚类结果产生较大影响;其次面对海量数据的挑战,单机运行的K-means算法也已经不能满足日益增长数据
随着大数据和云计算的不断发展,智能制造将成为未来制造业发展的主题方向。越来越多的传统制造业企业注重设备之间的互联和数据分析,通过将自身的传统信息技术与互联网、大数据相结合,推动企业各个方面智能化发展,让企业在市场上处于领跑地位。在传统的家电领域中,不仅要使家电产品自身智能化,而且也要把智能知识不断融入到家电产品的生产和销售过程中,从而实现制造过程智能化和销售过程智能化,提高家电产品的质量。随着智能
随着无线设备和移动终端的普及,快速地带动了定位领域的研究和发展。由于现代大型建筑物规模化的不断建设,人们在室内活动随时需要了解自己的位置信息,因此对室内定位的需求也随之提高。其中,WiFi定位技术凭借着低成本、易部署的优势成为室内定位的主流研究方向。然而,基于传统采集方式构建WiFi指纹地图的效率较低,需要花费大量的时间成本和人力成本。为解决这一问题,本文引入众包的概念,提出通过众包采集的方式实现
21世纪以来,随着嵌入式、摄像头、传感器技术的发展,推动了各类机器人、无人机、无人车的出现及应用。而无论是机器人的关节控制,还是无人机的位姿控制、又或者是无人车的路径规划,都需要对动态系统的状态进行估计。本文基于扩张状态观测器,对于非线性系统中存在干扰、时滞、丢包的问题,针对两类受到干扰的网络化非线性系统论述其状态估计:(1)针对系统存在状态非线性不确定时滞、输出有界非线性时滞及输入信号缺失的问题
近年来,自动驾驶、自主无人机、智能机器人等行业得到飞速发展,在服务业、农业、医疗方面有了大量成熟的应用。定位技术是机器人完成相关任务中最基本的需求之一,主要有基于激光雷达和相机的方法。单一传感器已经不能满足实际应用场景的需求,把激光雷达与相机的优点结合,利用激光雷达与相机各自的优势可以实现精度更高、稳定性更强的定位方法。本文在基于稀疏直接法的DSO(Direct Sparse Odometry)算
科技的进步带来了不断提高的生产、生活需要,从而使得工程系统越来越复杂,出现了如航空发动机、车辆动力学、电力网络、电机等安全关键系统。这些系统十分重要,且倘若它们发生故障,将会极大损害社会的利益财产安全,轻则影响社会正常运作,重则可能造成重大的安全事故。故障检测方法能有效保障这些系统的安全运行,在实际生产中意义重大。本文将确定性学习理论与线性自适应观测器技术相结合,提出了一类非线性系统的故障诊断方法