论文部分内容阅读
超强超短脉冲经过非线性介质时呈现频谱展宽的过程被称为超连续光谱(Supercontinuum spectrum,SC)。该现象源于脉冲激光在非线性介质中的自相位调制,交叉相位调制,受激拉曼散射和四波混频等非线性效应与光纤色散的共同作用导致超连续谱的展宽。中远红外波段的超连续谱光源覆盖了(2~16μm)分子指纹识别区,包含两个波段的大气窗口,具备光谱范围宽,相干性好等特点,并广泛应用于荧光成像、全反射式荧光显微系统(TIRF)、荧光寿命成像(FLIM)、光学相干层析术(OCT)、分子识别、红外定向对抗等科学研究领域。硫系玻璃基质材料具有极宽的中红外透过光谱范围(1~20μm),极高的折射率(2.0~3.5)和非线性系数n2,以及材料组分可调性等特性,使其在中远红外超连续谱产生的非线性工作介质中具有独一无二的优势。传统结构的硫系光纤由于材料本身色散原因导致零色散点(ZDW)普遍处于5μm以上中远红外区域。由于光纤中的级联SRS和SPM非线性效应局限,用常规的1.5μm或2.0μm超短脉冲激光泵浦,难以取得平坦且宽的光谱输出。光纤拉锥技术是一项重要的光纤后处理方法,硫系光纤经过拉锥可灵便的调控光纤色散及非线性,有望完成全光纤中红外超连续谱光源的研发。目前国际上报道的大多采用含As硫系玻璃(如As2S3或As2Se3)作为光纤基质材料,这在光纤玻璃材料制备、拉丝以及后续的拉锥都是存在一定的安全隐患,同时含As的硫系玻璃其三阶非线性型系数还有待提高。Ge-Sb-Se玻璃是一种环境友好型的新型硫系玻璃体系,具有较好的机械性能和红外光学性能、较高的热稳定性、优异的粘度和温度特性。但目前为止,国际上很少有报道Ge-Sb-Se玻璃光纤拉锥制备及其红外超连续谱输出特性研究。本论文在拉锥硫系光纤的中红外超连续谱研究的文献调研基础上,展开了Ge-Sb-Se拉锥光纤的制备,深入探索了硫系光纤拉锥工艺,并结合Rsoft光学软件对Ge-Sb-Se硫系拉锥光纤群速色散进行模拟计算分析,同时采用Mode Solutions光学软件分析硫系拉锥光纤中过渡区域的光强变化及锥区能量传输的效率。最后进行飞秒激光泵浦Ge-Sb-Se硫系拉锥光纤,实现了中红外超连续光谱输出。