【摘 要】
:
随着自动化装备向智能化和集成化方向发展,工业机器人领域广泛应用的环形运动平台需要通过传感器对环形运动单元进行实时的速度和位置反馈。然而,传统的机械运动传感器仅适合直线或旋转运动的检测,对于轨迹半径较大的环形运动存在结构复杂、集成度低和维护困难等问题。基于摩擦起电与静电感应耦合效应的摩擦纳米发电机能够感知敏感的机械运动,并且具有自供电、集成度高、体积小、结构简单、成本低等突出优势,为环形运动的检测提
论文部分内容阅读
随着自动化装备向智能化和集成化方向发展,工业机器人领域广泛应用的环形运动平台需要通过传感器对环形运动单元进行实时的速度和位置反馈。然而,传统的机械运动传感器仅适合直线或旋转运动的检测,对于轨迹半径较大的环形运动存在结构复杂、集成度低和维护困难等问题。基于摩擦起电与静电感应耦合效应的摩擦纳米发电机能够感知敏感的机械运动,并且具有自供电、集成度高、体积小、结构简单、成本低等突出优势,为环形运动的检测提供了可行的技术方案。本文基于摩擦纳米发电机的独立层工作模式,研制了摩擦电环形运动传感器,并集成于环形运动平台,从动子结构、摩擦类型和材料等多个角度对传感器的服役特性进行系统地试验研究,为高精度环形运动平台的闭环控制提供技术基础。研制了不同摩擦类型的摩擦电环形运动传感器。设计定子电极和动子滑块结构,其中定子电极采用四路差分的环形叉指电极结构,有效提高了传感器的角位移分辨率,动子滑块采用滑动摩擦、滚动摩擦和扫掠式滑动摩擦三种摩擦类型的结构,将三种摩擦类型的传感器集成于环形运动平台;分析了三种摩擦类型的摩擦电环形运动传感器的工作原理,并通过静电场仿真分析其电势分布,对传感器结构设计的合理性进行了验证。开展了不同摩擦类型摩擦电环形运动传感器的电输出特性与耐久性试验研究。通过试验分析了电负性材料种类与厚度对传感器的电输出特性的影响;测试了不同摩擦类型与不同摩擦层结构的传感器耐久性;研究了三种摩擦类型传感器的电输出特性,包括传感器的开路电压、短路电流与负载特性等,为传感器信号处理提供基础。通过传感器的耐久性与电输出特性试验研究,综合确定了传感器摩擦层材料、结构和摩擦类型的应用方案。提出了摩擦电环形运动传感器的实时硬件信号处理方法,将传感器原始信号转化为标准的数字方波信号,减少了传感器采集端口数量;搭建了摩擦电环形运动传感器测试平台,实现了传感特性参数的实时采集;利用高精度光电编码器对传感器进行标定,测试并对比分析了三种摩擦类型的摩擦电环形运动传感器的速度和角位移传感精度;针对摩擦电环形运动传感器的最终应用方案,测试了传感器的速度绝对误差率、角位移精度和重复定位精度等传感特性参数。
其他文献
随着现代科技水平的不断提高,许多重大工程项目越来越需要对大型构件进行加工,以往通常采用大型机床加工其表面特征,但机床的规格和成本不能随着构件尺寸的增加而无限扩大。为了解决这一问题,可移动的加工设备成为了大型构件加工的研究热点之一,其中工业机器人由于灵活性较好,被广泛应用于生产加工。但工业机器人自身控制系统的开放性并不好,难以针对特定项目进行个性化控制,且刚度弱、定位精度低会导致加工误差较大。因此,
随着机器人行业的发展,人机交互问题也成为了热门研究问题。当机器人末端受到外力的作用时,机器人如何顺应这一外力并且不伤害到人以及不损坏自身成为了研究的重要问题。本文研究内容来源于实验室的科研课题合同,旨在利用灵巧手指尖末端传感器信号的多模态进行柔顺控制,从而完成更多复杂、智能的任务。本文首先对灵巧手指尖传感器和柔顺控制技术的研究现状进行综述,针对目前存在的研究问题确定本文传感器的选择以及柔顺控制技术
工件台是光刻机的核心子系统之一,在对硅片进行对准、调平调焦和扫描曝光等的操作中发挥着十分关键的作用。六自由度的微动台是工件台的核心部件,其跟踪定位精度直接影响光刻机的分辨率。微动台的六个自由度可以分为水平方向和垂直方向两组。水平方向包含X、Y、Rz三个自由度,主要完成硅片的对准和步进扫描,垂直方向包含Rx、Ry、Z三个自由度,主要完成调平调焦。本文主要研究对垂向三自由度的控制,研究内容如下:(1)
我国老年人口的增速在不断加快,而且老年人由于体质弱,在日常生活中常常需要家人等的看护,因此需要全社会的共同努力。随着安防、通信等技术的发展,视频监控成为保障老年人生活的重要手段之一,摄像头可以代替人工来进行查看。但是传统监控摄像头需要投入大量的人力来识别小概率的意外事件,因此本文尝试对于视频监控中的老年人异常行为进行自动化的识别,提高监控视频的利用率,为老人的生命安全提供更全面的保障。根据识别的任
利用霍尔位置传感器实现永磁同步电机的正弦驱动,在实现电机高性能运转的同时减小了系统体积,对提高系统的功率密度具有重要的研究和应用价值。然而,霍尔位置传感器会因加工和安装误差等原因导致输出信号不对称,进而带来转速和角度估算误差增大的问题,影响系统的性能,本文对此进行重点研究,并提出霍尔位置传感器存在偏差情况下的优化控制方案。插值法具有原理简单,估算转子位置不需要电机参数的优点。然而在霍尔信号存在偏差
随着未来空间探测技术的发展,灵动性、机动性成为在轨操作技术未来发展的重要方向,基于机械臂的在轨操作局限性也被逐渐体现出来,需要一种能够搭载操作执行器的太空机器人,来实现太空中更多灵巧性的在轨操作,但是太空机器人在降落至航天器上时会受到很大的碰撞力,影响降落的稳定性。本文提出了一种基于仿猫构型的缓冲机构式太空机器人,通过对猫进行跳跃缓冲机理的研究和仿生试验,得到仿生缓冲机构腿部三关节的主要构型,并建
随着材料科学的发展,越来越多的介电材料变得更薄、更耐用、性能更稳定,并有可能在某些领域取代传统金属。因此,高灵敏度介质厚度传感器的研究不仅对行业中元器件的设计、加工和生产流程具有重要意义,而且可以辅助材料科学的精确研究。与其他厚度检测仪器相比,微波检测手段可以在实现无损检测的前提下,轻松、低损耗地穿透介质材料,并且根据以自身的介电特性变化对应于不同厚度的差异,可以更加准确和可靠地完成检测。然而目前
随着深度神经网络的发展,其在视觉领域优秀的表现引起了国内外学者的关注,基于卷积神经网络的方法已经成为解决视觉领域相关任务的最重要工具。对于天气退化图像的识别及复原来说,一直是国内外学者的研究热门,特别是在自动驾驶领域,这有助于实现全天候自动驾驶。传统的天气识别算法仅仅考虑了晴天和阴天这种静态天气图像的识别,而对于自动驾驶领域来说,汽车行驶的环境往往关注的是动态的天气状况。对于去雾领域,很多研究都假
随着移动机器人运用范围的扩大和作业要求的提高,特殊环境作业对移动机器人提出了更高的要求,攀援机器人能够达到人工作业无法达到的高度并完成相应工作。攀援机器人需要在复杂的环境中寻找合适的落脚点,同时需要考虑自身平衡。因此,根据攀援的环境如何生成既能使机器人整体不失平衡稳定性又能找到使得抓握壁面上的支撑点的路径规划是关键问题。本文分析了攀援的主要问题包括抓取、平衡和路径规划。针对自身平衡问题,首先对攀援
随着现代社会智能化水平的提高,针对多智能体的研究成为了当下的热门,而多智能体的追踪-逃逸问题由于同时存在着智能体之间的协同合作与竞争博弈,是多智能体研究中的核心问题之一。自追逃博弈提出以来,追逃问题逐渐发展为一个庞大的问题家族,本文主要针对三维环境下的多智能体逃逸问题展开研究。本文引入了强化学习的方法弥补了传统方法在无模型情况下无法设计控制器的不足。本文提出了一种基于DQN算法的多智能体逃逸算法,