含油污泥相稳态共存模型及分离特性研究

来源 :中国石油大学(华东) | 被引量 : 0次 | 上传用户:yh920927
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
含油污泥是石油化工生产中产生的一种有机危险固体废弃物,必须进行无害化处理。其无害化处理的关键就是脱油、脱水,但是由于其含水量大、有机物种类多,处理难度很大;需要对含油污泥进行预处理。预处理添加剂及处理方法大多依据实验和经验确定,工作量很大,并具有一定的不确定性。论文试图从理论分析入手,结合数值模拟和试验研究,揭示含油污泥预脱水、脱油的技术关键和工作方向。在分析含油污泥微观图像的基础上,建立了水为连续相,油滴、固体颗粒及乳状液滴共存的几何结合模型。基于连续水相中油滴之间及固体颗粒之间的微观受力,建立了双微粒稳态平衡模型,并通过较详细计算分析,得到油滴稳态共存临界直径是14.04μm,固体颗粒稳态共存临界直径是7.1μm。引入经典DLVO理论,建立了乳状液滴总作用能平衡公式,对各参数的影响趋势进行了分析,发现油滴半径越小,水滴半径和水滴偏心距越大,油水越容易分离。基于油滴和固体颗粒的几何结合模型,应用COMSOL软件,对流体中微粒的行为特性进行了数值模拟。发现低速流动不会造成物质微团共存体系失稳,微团表面同种电荷阻碍其聚并;微粒直径对其聚合特性的影响较大,得出油滴直径越大,油滴越容易聚并;固体颗粒粒径越大,固体颗粒越不容易团聚的结论,与理论分析规律基本一致。基于油包水乳状液滴模型,分析了油滴-水滴的分离特性,发现电场强度越大、油滴半径越小、水滴半径越大、水滴偏心距越大、两液滴夹角越小,水滴靠近油滴边界的时间越短;而界面张力越小,油水分离时间越短。对多水滴乳状液滴模型模拟研究,发现在加入电场的情况下,油滴中的水滴会先互相融合成大水滴,最终实现油水分离,表明电脱水技术适于含油污泥预处理。在分析含油污泥相分离机理的基础上,进行分离试验发现,离心作用有利于微粒聚并,絮凝剂可以有效诱导含油污泥失稳,破坏其稳定共存状态,两者综合作用可使污泥含水率下降约45%~60%。乳状液电脱水实验表明了电场强度越大、水滴直径越大,脱水速度越快;界面张力越小,脱水时间越短。实验结果定性地验证了理论规律。
其他文献
随着制造技术的进步与发展,产品集成化逐步加强,使得关键零部件尺寸微小化,其中微孔及微细流道结构作为冷却关键结构在航空航天关键零部件制造、汽车制造业、新一代集成电路(IC)冷板制造、精密医疗仪器等领域应用广泛,但是目前的微孔微流道都存在其自身缺陷。感应熔覆技术是一种新型表面改性技术,可在基体表面成形提升基体表面性能的熔覆层。本文紧密结合工业制造中对微孔微流道制造技术的需求,基于感应熔覆技术,将机械性
我国是酒的故乡,也是酒文化的发源地,是世界上酿酒最早的国家之一。在中国数千年的文明发展史中,酒与文化的发展基本上是同步进行的。随着经济和社会的发展,人们对于酒的需求越来越多样化,因此研究出更多受人们欢迎的酒是非常有意义的。本论文提出一种以大米和豌豆为原料的白酒发酵工艺方法。将豌豆经过粉碎、糊化、液化、糖化、和蛋白酶处理后的水解物在30°C,120 rpm条件下培养Myroides sp.ZB351
在国民经济迅速发展的今天,海洋资源的开发与利用对发展沿海地区经济具有重大的战略意义,但是海洋环境下存在的金属腐蚀现象日益严重,传统的金属材料防腐手段面临着严峻挑战,所以采取合适的绿色环保型防腐手段,减缓金属在海洋环境下的腐蚀具有重大意义。科学研究证明,超疏水表面防腐技术在金属表面防腐工作方面具有广泛的应用前景,受到海洋贻贝分泌多巴胺所具有的超强粘附能力的启发,本文主要利用聚多巴胺功能修饰的方法在块
铝基非晶合金具有优异的力学性能和耐蚀性能,当前多以涂层材料的形式应用于材料的防护领域。但由于热喷涂技术相对较低的冷却速度和涂层自身微观结构的限制,合金涂层尚未成为完全的非晶态。强流脉冲电子束改性技术可以通过强电流、短脉冲的电子束对涂层表面进行重熔处理,从而使材料实现非晶态转变。本文制备AlCoCe合金和粉末,然后采用超音速火焰热喷涂技术在Q235基体上制备AlCoCe合金涂层,最后通过强流脉冲电子
小学数学错题资源的有效利用首先需要弄清错误产生的原因,这是由于知识的缺乏,或者问题的含义不明确,又或者是在做问题时粗心大意造成的错误。只有在明确错误原因的基础上,我们才能更好地利用学习方法进行改进。在这个过程中,学生需要充分发挥自己的主体作用,能够独立思考,解决学习过程中遇到的问题,认真思考,纠正和完善自己的数学知识结构。同时,在使用错题资源的过程中,教师要发挥主导作用,及时引导学生,加强对学生的
压力容器是工业时代最重要的设备之一,在压力容器在服役过程中所处环境往往伴随着高温、高压、高腐蚀介质,面临裂纹、变形、腐蚀孔等造成压力容器损坏的危险,若不进行及时有效的检测,轻则企业停产重则发生爆炸等安全事故,对人民生命财产安全带来重大隐患。传统无损检测手段不仅效率较低还无法消除检测人员进入容器内部实施检测的安全隐患,因此本课题在对机器视觉进行深入了解的基础上,研究多种图像处理算法在压力容器无损检测
在全球气温持续升高和化石能源紧缺的情况下,作为绿色低碳的替代能源,地热能在改善大气环境和人类生活环境方面发挥了不可替代的作用。针对典型的地热环境,掌握不同种类的不锈钢的腐蚀行为规律,选择恰当的不锈钢种类有十分重要的科学意义与工程应用价值。因此,本文选择了316L不锈钢与两类超级铁素体不锈钢(B44660和S44660),将传统电化学测试技术与先进的微区电化学测试相结合,辅助以材料表面的分析技术,研
盐水层具有分布广泛、储存容量大的优势,被认为是最理想的CO2地质封存场所。然而,当盐水层上方的盖层存在缺陷(废弃井、高渗区、断层等)时,封存的CO2可能会发生泄漏。CO2沿断层的泄漏是常见的CO2泄漏方式之一。伴随CO2泄漏,沿断层会发生特殊的流体交换现象(包括CO2泄漏、清洁水漏失、盐水逃逸)。目前,该现象很少被提及,而现象背后的机理尚未被揭示。为了揭示该流体交换机理,本文对伴随CO2沿活化断层
超声导波的缺陷敏感性高,传播距离长,因此超声导波检测技术被广泛应用于结构健康监测领域。压电传感器由于其具有高灵敏度,低成本、兼备驱动传感功能等优势常被用于激发和检测结构中的导波信号,基于压电传感的金属结构表面开口裂纹检测也得到了重点研究。大多数研究中,均假设表面开口裂纹内部杂质只是空气,但是在工程实际中,由于暴露在操作环境中,表面开口裂纹内部通常充满杂质(例如灰尘,污垢,油脂)。因此,开展金属结构
铝和2024铝合金由于具备优异的性能在海洋工程及航空航天领域被广泛应用,铝和2024铝合金在环境中能够形成氧化膜阻止点蚀的发生,但是Cl-能够使氧化膜破裂导致点蚀发生。在Cl-存在的环境中,铝会发生点蚀时和阳极析氢,同时由于阳极析氢过程中的“负差数效应”(NDE)的存在,会加速铝的腐蚀,降低铝的使用效率。虽然国内外对于铝及铝合金腐蚀行为和腐蚀防护已经有了大量研究,然而大多数研究往往都相对于通过电化