【摘 要】
:
当原子内层电子电离产生高激发态的电子空穴时,空穴态的原子可通过电子衰变过程退激发。俄歇和原子间库仑衰变(ICD)都是由电子关联引起的电子衰变过程。在稀薄环境下,俄歇衰变的研究主要基于单粒子理论。而在稠密环境下,环境效应不可忽略,ICD过程是一种高效的电荷重分配过程。本文主要围绕ICD和俄歇衰变等电子衰变过程展开研究。具体研究内容如下。首先,本文基于相对论条件下的扭曲波近似理论计算了Rb+(3d-1
论文部分内容阅读
当原子内层电子电离产生高激发态的电子空穴时,空穴态的原子可通过电子衰变过程退激发。俄歇和原子间库仑衰变(ICD)都是由电子关联引起的电子衰变过程。在稀薄环境下,俄歇衰变的研究主要基于单粒子理论。而在稠密环境下,环境效应不可忽略,ICD过程是一种高效的电荷重分配过程。本文主要围绕ICD和俄歇衰变等电子衰变过程展开研究。具体研究内容如下。首先,本文基于相对论条件下的扭曲波近似理论计算了Rb+(3d-1)完整的俄歇衰变速率,包括单俄歇衰变和双俄歇衰变过程。本文通过knock-out和shake-off机制对电子关联引起的直接双俄歇衰变过程进行计算。3d-1空穴态的俄歇衰变过程中,一般认为主要的单俄歇通道是属于组态4s24p45s,4s4p55s,和4s04p65s的能级。本文的计算结果表明,Rb+(3d-1)最强的通道来自属于组态4s24p34d5s的能级,其衰变速率占总的单俄歇衰变速率的36.3%。属于组态4s24p34d5s的能级可以进一步的衰变到Rb3+,这使得级联双俄歇衰变速率较大。级联双俄歇衰变和直接双俄歇衰变在总的俄歇衰变中所占的分支比分别为50.60%和22.13%。因而,双俄歇在总的俄歇衰变中的分支比为72.73%,占据主导作用。接着,本文重点研究了空穴态稀有气体二聚物核能级的ICD过程,进而研究了其与定域俄歇衰变的竞争。本文运用Fano-ADC-Stieltjes方法分别计算了Xe+(4d-1)-R(R=Xe,Kr,Ar)以及Kr+(3d-1)Kr的ICD和俄歇衰变宽度(速率)。俄歇衰变是一个定域过程。因此,其宽度与空心激发态原子和近邻原子之间的距离无关。与之相反,ICD宽度随着空心激发态原子和近邻原子之间的距离的减小而增大,随初始空穴态能量的增加而减小,且随不同的邻近原子变化而变化。在衰变发生的Franck-Condon区域,Xe2,Xe Kr,Xe Ar和Kr2最大的ICD宽度与俄歇衰变宽度的比值最大为0.26%。然而,在较大的团簇中该比值可以达到几个百分点且在实验上可以观测到。ICD宽度与俄歇衰变宽度的比值较小是因为所研究二聚物原子间距过大(4–4.4(?))。结合以往的研究及本文计算结果可以推测,在单体间距仅为2-3(?)的氢键或者微溶剂团簇中,核能级ICD是原子吸收硬X射线后重要的电荷再分配过程。考虑到电子碰撞电离在直接双俄歇衰变和ICD过程中的重要作用和影响,本文基于精细能级的扭曲波方法以S e3+为例详细研究了重原子的电子碰撞电离过程。首先,分别计算了直接电离和激发自电离截面并讨论了不同过程对总的单电离截面的贡献。同时,本文对S e3+不同的组态的电离截面表现出的不同的特质进行了讨论。组态([Ni])4s24p和4s24d的两个能级的电离截面基本相同,而组态4s4p2的不同能级电离截面差异较大。理论计算结果可以对实验测得的S e3+单电离截面(Alna’washi et al.,2014)进行分析和组态诊断。实验中除了存在基态4s24 p还存在激发态4s24d。
其他文献
含能结构材料是一种兼具力学性能和能量释放特性的材料。以含能结构材料取代传统惰性金属材料,实现战斗部全能量化是现代高效毁伤武器的发展趋势。Al基复合材料和Zr基非晶合金因其优异的力学性能和能量密度,是当前含能结构材料的研究热点,但同样存在各自的技术和理论问题。对于Al-Ni等Al基复合材料,其冲击反应释能效果不理想;而对于Zr基非晶合金,则难以实现大尺寸成型。为提升Al-Ni复合材料冲击释能性质,并
TaxHf1-xC固溶陶瓷作为Ta C和Hf C的固溶体,是目前已知物质中熔点最高的一类材料,且相比于单一的Ta C、Hf C二元陶瓷而言,TaxHf1-xC固溶陶瓷还具备了更高的硬度和更优的抗氧化、耐烧蚀潜质,有望继Zr B2、Hf B2等热门超高温陶瓷材料之后成为未来热结构材料领域新的候选材料。但由于Ta C和Hf C陶瓷的熔点高且自扩散系数低,制备高致密且具有理想单相固溶结构特征的TaxHf
社会系统、信息系统、军事系统等典型复杂系统呈现出显著的层次性、差异性及动态性特征,传统的单层网络模型已无法充分描述以上复杂性,研究适用于层间耦合、结构差异、动态演化的多层网络模型尤为必要。网络鲁棒性是网络科学核心问题之一,多层网络鲁棒性更具挑战,已成为网络科学发展亟待解决的前沿课题。本文针对多层网络结构鲁棒性,重点开展多层网络的耦合作用机制、攻击级联失效以及结构状态恢复等研究。具体包括以下四个方面
本文以超燃冲压发动机中的液体燃料射流为研究对象,以实现超声速气流中液体燃料射流喷注、雾化、混合、蒸发及燃烧完整过程的数值模拟为基本目标,建立了两相燃烧大涡模拟方法,并对超声速气流中横向喷雾混合及燃烧过程中涉及的基本物理过程及机理进行了讨论分析。首先基于欧拉-拉格朗日框架建立起一套适用于超声速气流中两相流动的大涡模拟方法。通过基于网格控制体建立的动态数据链表实现了对液滴的高效管理以及液滴在变形网格条
在过去的四十多年中,热带气旋(TCs)的路径预报水平得到明显提高,但是TCs强度,尤其是快速增强过程的预报水平却提高缓慢。这主要是因为TCs的强度变化受到复杂的内部相互作用和外部应力的共同影响,如海气相互作用。作为中国近海中TCs最活跃的海域,南海的热动力结构复杂、观测不足,且经过的TCs发展和登陆时间很短,因此对其中快速变化TCs的预报造成了巨大挑战。所以,认识海洋与TCs之间的相互作用机制对提
信息技术的深入发展和网络应用的不断丰富,加上智能终端的广泛使用,使得社交网络成为人们发布和获取信息的重要媒介。借助于社交网络平台,人们在现实世界中的各种复杂关系在虚拟网络上都能得到体现与延伸,同时,在真实世界中发生的事件也会以网络信息的形式借由用户之间的线上交互进行扩散,进而对人们的线下行为产生影响。作为社交网络的主体要素,用户是网络信息的生成者与传播者,其表现出的社交影响力不仅是信息传播与关系结
随着互联网技术的飞速发展,人类社会可以利用的数据正以前所未有的速度增长,宣告了大数据时代的正式到来。作为数据分析的重要工具之一,复杂网络理论自诞生以来就受到了来自各个领域研究学者的广泛关注,特别是随着在线社交网络的兴起,利用复杂网络理论分析用户的行为模式已体现出其巨大的经济和社会价值。研究复杂网络的主要目的就是为了解决网络上的动力学问题,本文基于复杂网络传播动力学相关理论,分别开展了关于影响力极大
线性方程组的求解开销往往是实际复杂应用在数值模拟时的主要开销。预处理迭代方法是求解大规模稀疏线性方程组的常用求解方法,常见的预处理方法和迭代方法往往聚焦于方法的通用性能而缺乏对于实际应用数值模拟特征的考虑。惯性约束聚变是一类强非线性、强间断、大变形、多介质的辐射流体应用,其在数值模拟时表现出各种特征:一方面,在模拟的一段时间内,一些物理量在局部计算区域内发生剧烈的变化,而在其他区域内变化不大;另一
信息流是系统动力学分析中的一个重要概念,在系统科学、气象学、神经科学、海洋学、生物学、网络动力学、金融经济学、统计物理学、湍流、数据科学以及人工智能等众多学术领域中有着广泛的应用和研究。本文在已有的单因素信息流基础上,研究了高维动力系统多因素信息流的统计特性以及应用,并从信息流的角度出发,提出了基于信息流的多输出响应全局灵敏度分析方法。本文的主要工作和创新点如下:1.建立了关于绝对熵的多因素信息流
随着科学技术日新月异的发展,尤其是以互联网技术为代表的网络时代的到来,各应用领域涉及的优化问题数据规模愈加庞大。梯度类算法作为求解优化问题的一类普适性算法,因其低复杂度的计算形式和较为完善的理论基础得到了广泛的应用。研究新型梯度类算法具有重要的理论价值和应用前景。一方面,数据时代应用发展中对高效优化算法的追求要求我们设计高效的梯度算法格式;另一方面,新型梯度算法投入到实际应用中会遇到理论保证上的挑