充填包装机传动系统轴承故障诊断与健康状态预测研究

来源 :江苏大学 | 被引量 : 0次 | 上传用户:gorlsand
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
包装机是我国制造业的重要组成部分,负责完成产品和商品的包装,随着设备智能化与自动化的发展,对包装机长期稳定连续运行的要求也越来越高。传动系统是包装机的核心,负责产生与传递设备所需要的动力,而滚动轴承作为传动系统中的关键部件,其运行状态会直接影响包装机的稳定性。目前,包装机的主要维护方法是事后维护与周期性维护,这两种维护方式难以避免设备因故障意外停机,且故障查找、设备维修耗时较长,影响包装生产,经济损失巨大。本文以袋式充填包装机传动系统轴承为研究对象,研究了轴承故障诊断与健康状态预测方法及系统,以实现对包装机预测性维护决策与故障定位,降低设备维护成本,缩短故障查找维修时间,对提高包装生产效率与经济效益有重要意义。本文主要研究内容和结果如下:(1)包装机传动系统轴承故障特征分析与传感器布局。分析了包装机传动系统的结构特点,研究了其滚动轴承的失效形式及基于频率的故障特征;建立了传动系统轴承的三维模型,利用ANSYS Workbench软件对传动系统的轴承部件进行了模态分析、谐响应分析,选择确定了振动最强烈的位置作为振动检测传感器的安装位置。(2)包装机传动系统轴承故障诊断方法研究。针对包装机实际生产场景,将环境噪声、变工况、跨部件,归结为故障诊断领域自适应问题,提出了基于子域自适应的卷积神经网络故障诊断方法,在卷积神经网络的全连接层中嵌入局部最大均值差异,减小源域与目标域中同类故障信号的差异,提高了模型的跨域诊断能力,并利用CWRU数据集模拟了实际生产的噪声、变工况、跨部件场景,模拟数据分析结果验证了该故障诊断方法具有较好的适应性,解决了实际故障诊断应用中因源域与目标域的数据分布不同而导致故障诊断准确率下降地问题。(3)包装机传动系统轴承健康状态预测方法研究。针对实际轴承健康状态预测时,会存在数据分布变化的问题,提出了DALCNN模型,通过长短时记忆网络初步提取振动信号中的时序特征,卷积神经网络进一步提取局部特征并降低数据维度,全连接层中嵌入最大均值差异以对齐源域与目标域数据,提高了该预测方法的域自适应能力,利用IEEE PHM 2012数据集模拟了实际生产的单工况、噪声、变工况场景,模拟数据分析结果验证了该健康状态预测方法有效性。(4)故障诊断与健康状态预测系统设计及应用试验。以模块化的方式设计系统,主要包括信号采集模块,信号处理模块,数据管理模块以及人机交互界面;在实际生产的包装机上部署了系统,并进行了部分应用试验,试验结果分析:工况变化时,所提出的故障诊断方法的准确率为95.35%,健康状态预测方法的预测指标RMSE与MAE分别为0.082与0.065,验证了所研究的故障诊断与健康状态预测方法、设计的系统的有效性。
其他文献
本文的研究是在镇江市重点研发计划(GY2017001)的资助下开展的。离心泵叶轮内空化的发生会导致泵的扬程降低、效率下降,同时也会损坏叶轮等过流部件,甚至诱发强烈噪声,严重影响泵的正常运行与工作性能。叶片表面非光滑结构是一种有效控制空化的方法,不同非光滑结构的形态、布置位置、大小与布置密度对于空化的抑制效果都会有所不同。此外,非光滑结构对非空化状态下流体诱导噪声的抑制效果已初见成效,但空化状态下的
新世纪以来,化石能源的消耗量急速增加,伴随着环境污染问题的加剧,氢能作为一种绿色、高效、无污染的可替代能源,受到了越来越多的关注,而如何高效制备氢能成为研究的关键点。现阶段氢气主要通过化石能源制备,生产过程会产生大量CO2,而可再生电能制氢作为一种新兴的制氢过程,国内外学者对此进行了大量的研究。在电解水制氢的过程中,氢气和氧气生成之后会聚集在电极板的附近。而当这些气泡粘附在电极板表面时,就会增加电
随着航空航天、轨道交通等行业的迅猛发展,实际工程对自润滑关节轴承的专用基体材料性能提出了更高要求。因具有较高的综合力学性能、热传导性能和良好的耐腐蚀性能,高比强度的铝合金关节轴承正日益受到重视。然而,铝合金存在硬度低,加工变形大,精密加工较困难的应用缺点。本文以7075-T651铝合金作为研究对象的基体材料,通过有限元法分析铝合金作为关节轴承基材的可行性。同时,通过在7075铝合金表面进行多元纳米
AZ31B镁合金属于可生物降解材料,因具有与人骨相近的性质可适用于医用材料植入领域,但进入人体后的高腐蚀速率及引发的生物相容性问题限制了它的应用。现有的表面处理方法如微弧氧化、喷丸强化、激光熔凝等,在解决以上不足时有危及生物相容性和降低机械特性的风险。激光冲击强化技术通过在材料表面引入高幅残余应力,细化表面组织,能够有效改善材料的生物相容性和耐腐蚀性。本课题以AZ31B镁合金为研究对象,通过激光冲
碳化硅陶瓷作为非氧化物结构陶瓷,由于其优异的硬度、化学稳定性、耐腐蚀和耐热性,在航空航天、化工、电子等工业领域中获得广泛的应用。但由于碳化硅陶瓷固有的硬脆特性,传统的机械打孔方式既费时又费力,很难满足其微孔的加工。相比较传统的机械打孔方式,激光打孔方法是一种有效的陶瓷打孔方式。但激光打孔存在锥度大、重铸层厚、圆度差和微裂纹等缺陷,影响加工孔的质量。本文将碳化硅陶瓷放在水中进行脉冲激光切孔,通过水下
纤维悬浮流广泛存在于制浆造纸、纺织、复合材料生产等工业领域,探究其流动特性对相关产品质量和流程的高效运转起着重要作用。本文依托国家自然科学基金项目(51309118),以一台开式叶轮离心纸浆泵作为载体,分别以清水及不同质量浓度的柔性纤维悬浮液作为研究介质。通过外特性测试系统、粒子图像测速技术(Particle Image Velocimetry,PIV)以及高速摄影系统探究不同工况下纤维浓度对泵性
随着传统内燃机的高NOX和PM排放造成的环境污染日益加剧,天然气发动机的研发越来越受到重视。其中,柴油引燃天然气直喷发动机具有接近柴油机的动力性能,排放性能更是远优于常规柴油机,成为当前的研究热点。本文基于康明斯ISX天然气发动机,对发动机不同喷嘴结构(孔径、喷孔数等)与喷射策略开展模拟研究,分析燃烧与排放特性,提出柴油引燃天然气发动机的性能、排放优化策略。使用CFD软件CONVERGE建立柴油引
大自然中大量生物表面都表现出特殊的润湿性能,目前仿生制备的功能性表面已经被应用于自清洁、抗油抗污、防雾、抗结冰、液滴定向移动等领域。由于在金属表面制备超双疏功能性微纳结构能够使低表面能的液体(表面能小于水的表面能72.5m N m-1)难以附着在金属表面,从而显著提高其抗腐蚀性能。因此,该研究正在越来越受到科研人员的关注。凹角结构和低表面能物质都对制备超双疏金属表面具有重要作用。本研究详述了一种“
磁电复合材料在常温下具有磁电响应快,灵敏度高的特点。以磁电复合材料作为敏感元件的器件具有不需要额外电源为其供电,无需接入主电路的特点。作为磁电复合材料组成相的FeSiB非晶合金材料相比于超磁致伸缩材料需要的偏置磁场小,有着更高的磁致伸缩灵敏度。同时,它具有较高的磁导率,较好高频特性,可以制备成薄带状,满足器件小型化的要求。论文基于层叠复合材料的理论模型,使用等效电路法与基于本构方程直接推导方法研究
抗生素造成的废水污染已成为目前人类面临的水污染治理难题之一。构建绿色高效、可见光响应且光生载流子分离率高的光催化剂是利用光催化技术处理抗生素污染物的关键。本论文以无机半导体氯化氧铋(BiOCl)为基体光催化材料,利用具有大环共轭结构的卟啉或金属卟啉化合物对其进行复合修饰,考察了卟啉的引入对基体材料的可见光利用率和光生电子-空穴对分离率的影响,探究了制备得到的复合型光催化剂实现抗生素污染物高效去除的