论文部分内容阅读
随着移动通信技术的不断演化,第五代移动网络(5th Generation Mobile Networks,5G)已经正式商用。这为物联网带来了广覆盖、大连接和低时延的网络接入服务,万物互联的时代已经到来。面对异构的网络接入技术,移动物联网数据呈现出海量性、异构性和动态性等特点。消息服务系统需要支持大规模消息的接入和管理,提供高效可靠的信令控制能力和调度能力。此外,物联网边缘设备计算能力和存储能力有限,异构移动物联网系统间的融合通信变得越来越困难,信息安全问题也更加突出。传统的入侵检测系统(Intrusion Detection System,IDS)缺少动态学习和更新能力,模型训练代价较大,无法有效检测异构的和未知的异常,存在冷启动的问题。针对移动物联网的异构融合组网、异构消息服务、异构数据特征融合和识别、异构网络安全防护及其升级等融合和安全通信的关键问题。本文主要开展了以下研究工作:受生物器官移植免疫技术的启发,提出利用免疫耐受诱导抗排斥反应的机制,解决异构移动通信系统之间的融合问题。以移植免疫为技术机理,构建基于免疫耐受机制的5G非独立组网(Non-Standalone,NSA)融合架构。利用深度学习模型来识别供体协议类型,并对供体信令进行基于“异或”操作的解码,以及基于基因位域的再次编码。仿真结果表明,本方案可以有效识别供体信令,提高异构信令的亲和力和编解码效率,实现免疫耐受机制和算法的互补。为提高移动通信网络中消息的调度和分发能力,提出将人工免疫理论应用于移动通信系统的消息服务。利用模拟免疫应答机制,提出基于半分布式免疫动态自适应网络架构,构建检测器动态学习机制和免疫记忆机制。提出免疫消息分发系统的概念,利用克隆选择算法对消息头进行分类克隆,结合肯定选择算法,对消息体进行高频变异。在保证抗体多样性的前提下,解决哈希映射算法的空间消耗问题。仿真结果表明,消息识别能力和消息分发能力得到提升。针对物联网安全防护设备的计算资源有限的问题,以及升级更新的困难,以5G窄带物联网(Narrowband IoT,NB-IoT)为技术应用背景,提出一种基于免疫动态自适应机制的窄带物联网IDS架构,解决窄带物联网各网元异常特征库协同更新问题。设计基于免疫的增量数据提取方法,进而提出基于增量数据的模型权重更新训练方法。为降低边缘设备计算资源,构建基于简单结构的多层感知器,长短时记忆和卷积神经网络的IDS模型,并验证其静态检测效率。在多个场景中评估不同模型的增量学习性能,讨论不同模型在窄带物联网的适配性。仿真结果表明,所提方案可以满足窄带物联网小数据包和大接入量的需求,训练指标变化更加平稳。弥补静态模型无法自适应更新的局限性,降低数据完整性被破坏的风险,缩短模型更新周期,节省计算资源和存储资源。面对异构移动物联网入侵检测面临的数据识别和融合的挑战,提出一种基于词嵌入深度迁移学习的IDS。利用一种简单的域对齐方式,以保持源域张量和目标域张量的一致性,完成样本迁移。利用异构网络间的特征相关性,使用词嵌入将物理网络的数理逻辑特征映射为特征空间向量,完成特征迁移。利用不同的深度学习算法,完成模型迁移。并在多个异构数据集和多个场景中验证所提方案的有效性。仿真结果表明,本方案可以完成异构物联网IDS邻域数据的特征提取,节省异构物联网IDS模型的数据预处理时间和训练时间,解决异构物联网IDS的冷启动问题。