论文部分内容阅读
天然气的脱水处理是生产商品气的必备环节,其主要目的是防止后续处理和储运过程中出现水合物和液态水,以及防止酸性气体溶于游离水来腐蚀管路及设备。而超音速气液分离器是一种新型的气液分离设备,它具有具有低耗、安全高效和无污染等优点,对天然气矿场加工及集输具有重要意义。但目前国内理论研究尚不成熟,暂不具备商业使用价值。本文研究了超音速分离器的基本原理及其设计方法,利用Solidworks分别对拉瓦尔喷管、旋流管及旋流翼和扩压管等关键部件进行了三维设计。拉瓦尔喷管的收缩段采用五次曲线作为型线,喉部采用平角型直管的形式,渐扩段和扩压段设计为锥形,旋流翼采用基于飞机机翼的三角后掠翼。另外,由于在实验过程中研究喉部尺寸对超音速分离器分离效率的影响时,分离器喉部的安装过程繁琐且费时。所以本文设计了喉部变径可调结构。之后,根据变径式超音速分离器的型线结构及流场特点,对分离器的基本模型进行了模拟及分析。模拟结果表明:该装置具有低温制冷能力,可达到旋流分离的效果。同时在基本型结构的基础上,分别改变旋流翼位置、拉瓦尔喷管渐扩管锥角以及改变超音速分离器出口背压进行模拟计算并对比分析。得出如下结论:(1)旋流翼安装位置越靠近拉瓦尔喷管出口,旋流翼后超音速流动区域及低温、低压区域越长,气液分离效率越高。(2)拉瓦尔喷管渐扩管锥角影响分离器流场特性,过大或过小的锥角会使下游区域的流场特性变差,从而影响旋流管内气液的分离效率。特别是当锥角过大时,Laval喷管出口处容易产生较强的激波。(3)出口背压影响分离器内部流道内激波产生的位置,随着出口背压的增大,激波向超音速分离器的上游移动;且出口背压越小其整体流场特性较好,旋流管内气液分离效率越高。本文还对变径式超音速分离器的室内实验系统进行了研究,规划了安装调试的主要内容和方法;对测量仪表进行了选型。最后制定了较为详细的实验方案及流程。