论文部分内容阅读
随着我国航天工程领域任务的日趋复杂化、多样化,业界对航天器的控制中枢——处理器系统的性能要求日益增加,相关研究日益加深。针对进一步降低航天器中的处理器系统的成本,提升系统稳定性,加快运行速度等基本要求,本课题以龙芯LS132处理器软核为核心单元,设计了包含软硬件在内的片上系统So C。本课题的主体内容展开如下:首先,基于完备的资料调研与总结,对So C、FPGA、CPU、片上总线与MIPS32指令集等相关特征进行了论述。在此基础上,开展了LS132处理器核源码仿真实验,从而验证了该处理器核的正确性与功能完整性。其次,归纳了本课题中So C系统的硬件架构的设计以及软件部分的设计流程。在硬件平台设计方面,除对总线模块的设计进行说明并仿真验证之外,实现了系统的程序存储器——Nor Flash控制器的设计与优化。从算法创新的角度,提出了使用解锁省略与写入缓冲器编程算法协同优化的方式提升控制器读写速率,并且通过仿真结果证明本优化设计算法比标准编程算法速度提升约3.5倍,比硬件解锁单字编程算法速度提升约2倍。在So C系统的软件设计部分,包含搭建GCC交叉编译环境,编译启动代码PMON以及设计相关应用文件等内容。最后,基于本课题所设计的So C系统功能进行了一系列的测试实验,主要包括启动代码PMON的编译结果验证,以及所设计的应用文件的平台验证,验证结果表明该片上系统So C的功能完全正确。随后,对So C系统的资源占用情况与系统性能进行了表征与评估,结果表示该So C系统可稳定运行在43MHz的时钟频率下,符合设计要求。从应用创新的角度,本课题基于设计的硬件平台对Vx Works的板级支持包BSP进行了设计与开发,实现了Vx Works操作系统在LS132软核处理器平台上的正确移植。本课题工作为实现航天领域国产芯片自主可控奠定了良好基础,同时为我国航天领域中处理器系统的设计提供了新的思路,具有显著的工程现实意义。