论文部分内容阅读
固体氧化物燃料电池(SOFC)具有全固态结构、可使用碳氢燃料、综合转化效率高等优势,在众多新能源设备中得到了特别的关注,已部分应用于分布式电站中。然而,较高的工作温度带来了一些问题,如设备老化较快,密封困难等,碳氢燃料的使用,引起了阳极碳沉积、硫中毒等问题,此外还有阴极CO2中毒等问题。SOFC已经进入实用化阶段,不仅需要对单一材料进行优化,而且需要阳极,阴极和电解质各部件之间配合,这就是燃料电池的整体优化设计的问题。本文针对三大类关键材料的综合性质与成份规律进行了系统的研究。根据大数据统计结果显示,金属氧化物是目前最受关注的阳极金属催化剂相关材料体系,通过第一性原理计算,研究了多种金属元素在高温、强还原性气氛等阳极工作条件下的状态及其与关键性能的关系,并通过实验数据分析,确定了以NiO-CoO为中心优化区域,通过理论计算,分析了其形成的本质原因应该是能隙及体模量都处于适中偏低的范围;SrBO3系列钙钛矿结构材料可作为阴、阳极材料,也很引人注目,B位元素对结构稳定性的影响值得研究,通过量子力学总能量比较,以及结合实验大数据分析,确定了B位元素成份中以Mo-Fe-Co为中心的三类优化区域,理论计算结果也揭示出典型体系的电学性能差异是这一区域形成的内在原因,即氧空位形成能及离子迁移能较低,以及具有较小的能隙等;再者,以电解质材料为研究对象,对结构不同的电解质材料“基因”规律进行了研究,采用大数据分析了禁带宽度与稳定性的关系,利用理论计算分析了电子结构与离子迁移能力的关系,以这两种关系为基础,得到了 CeO2,ZrO2及镓酸镧等五种不同结构、不同成份的体系之间稳定性及关键性能的相对趋势,并对其内在原因进行了探讨。此外,还对LaSrCoO4及PrBaMn2O5两类性能表现良好的阴极材料的氧离子传输机理进行了研究,分析了不同结构对离子迁移性能的影响。通过以上对不同材料由不同研究模式所得的材料规律初步探索,我们总结得出:SOFC各材料的稳定性与功率相互制约,整体优化的基本模式是围绕着材料稳定性与综合性能的关系进行研究,所得到的三个材料规律是SOFC目前丰富的材料研究经验中精华的反映,也是燃料电池整体优化设计的理论依据,利用这些规律,本文讨论了燃料电池整体优化的基本原则,为SOFC关键材料的研究提供了较为现实的新的理论思路。