大功率电源管理芯片的设计与实现

来源 :湖北大学 | 被引量 : 0次 | 上传用户:ruanmm2588
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
移动电子产品的快速普及对现有电源管理芯片的充电功率以及充电时间提出了新的要求,电源管理芯片需要支持大功率快速充电并对片外器件进行精简,但是现有的电源管理芯片存在充电电流较低,需要片外时钟源输入,或保护电路不够完善等问题,难以满足低成本大功率快充市场需求。因此,本文设计实现了支持大电流充电,并且具有片上时钟和多种保护电路的大功率电源管理芯片。所设计的大功率电源管理芯片由低压上电系统、高压大功率充电系统以及保护电路系统构成。其中,低压上电系统用于对高压大功率充电系统和保护电路系统提供稳定的低压电源、基准电压和基准电流,具体包括带隙基准电压源、基准电压产生电路、基准电流产生电路、上电复位电路、低压线性稳压源、高压线性稳压源以及片上时钟等电路;高压大功率充电系统用于对芯片外部电池设备进行充电,包括休眠-限流模式转换检测电路、限流-大电流模式转换检测电路、升压电荷泵、升压电荷泵输出电压钳位电路、限流充电电路以及大电流充电电路等。此外,为了保证芯片在各个工作环境下的安全性,本文设计了多种保护电路用于保护大功率电源管理芯片正常工作,具体包括欠压保护电路、过压保护电路、过温保护电路、过流保护电路、噪声保护电路等。本文采用SIMC 0.18μm BCD高压工艺设计实现了该大功率电源管理芯片,芯片面积为3.39*1.46 mm~2。仿真结果表明,当芯片的输入电压范围为5 V到21 V时,低压上电系统工作正常,带隙基准电压源输出基准电压为1.2 V,低压线性稳压源输出电压为1.8 V,高压线性稳压源输出电压为4.3 V。高压大功率系统模式转换正常,当芯片未检测到电池负载设备时,芯片处于休眠模式;当芯片检测到片外电池负载,且电池电压小于3 V时,芯片转换到限流充电模式,输出充电电流为8.5 m A;当芯片检测到电池电压大于3 V时,芯片进入大电流充电模式,输出充电电流为5 A,最大输出功率为15 W。
其他文献
石墨烯及其纳米结构和复合结构一直是凝聚态物理学、化学、以及材料学等领域的重要研究课题。该类体系拥有新颖的电学、磁学、力学和热学性质。特别是,石墨烯中很弱的自旋-轨道耦合作用导致了较长的自旋弛豫时间,这有利于对其自旋和磁性进行量子调控,因而该类体系在自旋电子学器件的应用中具有巨大的潜能。本论文采用基于密度泛函理论(DFT)的第一性原理计算方法对含扶手椅边缘的石墨烯纳米带和石墨烯量子点的磁性调控进行了
学位
传统不可再生化石燃料逐渐枯竭与环境污染等问题的日益突出,使得具有高能量密度的锂离子电池被寄予厚望。但因Li资源稀缺导致成本越来越高,并且锂电池的有机电解液存在潜在的安全隐患。而水系锌离子电池(ZIBs)具有比容量高、安全性高、成本低等优点,具有广阔的应用前景。开发高性能的ZIBs正极材料是当前的研究热点,其中锰基氧化物因其成本低、理论比容量大、放电电压高、晶体结构多样而被认为是最有前途的候选材料之
学位
量子算法可以有效地解决传统算法难以解决的问题。量子算法可以用一套通用的量子门来设计,把输入态转换成期望的输出态。由于量子算法的复杂性,设计量子算法是具有挑战性的。当量子计算遇到机器学习,两者互利共赢、相辅相成。一方面,我们可以利用量子计算的优势来提高经典机器学习算法的性能,从而更高效地实现经典机器学习算法。另一方面,我们也可以利用经典机器学习算法对量子系统进行分析和改进。基于机器学习,我们从理论上
学位
随着大数据时代的到来,传统计算机需要处理的信息量呈几何形式倍增,因而当前的Von-Neuman架构计算机面临巨大挑战,导致模拟人脑来开发新型架构计算机迫在眉睫。忆阻器具有优异的电导调控能力,能够模拟生物突触的特性,成为构建下一代神经形态计算芯片的基础候选器件之一。然而,忆阻器作为人工电子突触,其阻变及突触特性仍需进一步优化,以满足神经形态器件的需求。本文从功能层材料优选及掺杂改性的角度来设计制备忆
学位
近年来,卤化铅钙钛矿材料因其具有高载流子迁移率、高光吸收系数、低缺陷态密度等优点,在太阳能电池、光电探测器、发光二极管等领域取得了巨大成就。然而,受限于卤化铅材料的不稳定性和毒性难以在光电领域进一步发展。因此,开发高稳定的环保型无铅钙钛矿材料成为一项研究重点。Bi基钙钛矿材料由于其较高的热稳定性及无毒等优点,成为研究的热点。本文基于简便的溶液法制备Bi基钙钛矿薄膜,并构筑具有自驱动特性的光电探测器
学位
作为一种高效且极具应用潜力的电化学储能装置,超级电容器受到了广泛的关注。然而,相较于锂离子电池,目前超级电容器的能量密度还相对较低,限制了它的大规模商业应用。因此,本文设计了一种高容量的氮掺杂碳与镍钴层状双氢氧化物复合的纳米片阵列电极(N/C@Ni Co LDH),用于组装高能量密度的超级电容器。该电极以沸石咪唑酯骨架(ZIF-67)纳米片阵列为模板,通过水热法在ZIF-67上原位衍生得到N/C@
学位
利用可再生能源产生的富余电力电解水是获得氢气的有效途径。近年来,Ni Fe基层状氢氧双化物(LDHs)被广泛作为在碱性水电解析氧反应中的高效催化剂。然而传统的Ni Fe LDH催化剂仍存在许多问题:其一是合成方法复杂不利于大规模商业化应用;其二是电导率较低、催化活性位点暴露少;其三是催化剂容易脱落导致催化剂稳定性差、催化效率下降。基于此,本文开展了以下工作:首先,采用室温下硼氢化钠一步还原法在泡沫
学位
铋层状陶瓷作为一种居里温度较高的无铅压电陶瓷,具备高温高频条件下的应用前景,比如用于航空航天、军工建设、地质勘测等领域,所以受到了越来越多的关注和研究。但是由于其钙钛矿层超长c轴阻碍电偶极子翻转,导致压电性能难以提高,所以本文提出以铋层状结构Na0.5Bi4.5Ti4O15陶瓷为研究对象,通过钙钛矿层的A/B位多元素取代调节晶格畸变程度来降低极化难度,提高材料的电学性能,同时探究掺杂引起的缺陷调控
学位
传感器作为一种检测装置,通过感受外界的信息拓宽了人们的感知范围。在高度信息化的当代,为了满足各行各业的需求,人们研发了多种形式的传感器。而柔性压力传感器因在可穿戴设备和电子皮肤等诸多领域的潜在应用,也受到国内外学者的重视。基于无铅压电低维纳米材料的压力传感器在柔性感知领域的应用是近年来该领域研究人员关注的热点,但无铅压电材料的压电性普遍不高,如何提升材料的压电常数是该领域面临的最大挑战。本文以铌酸
学位
伴随着电子信息技术的不断发展,电子产品的更新换代速度越来越快,其中柔性可穿戴、可植入的小型智能化电子器件成为新型电子产品的一种发展趋势,在生物医疗、运动时尚、智能家居等领域显示出强劲的发展势头和广阔的应用前景。针对柔性电子产品进行结构功能优化、集成化、智能化等方面的研究成为近年来的热点。与此同时,如何使这类柔性电子器件持续稳定的工作成为该类产品面临的重要问题。柔性压电纳米发电机利用压电效应将人类生
学位