【摘 要】
:
科学的体育运动能够改善人体的健康状况,对人们日常生活中的体育运动进行定量分析,能够有效避免不当运动带来的损伤及达到运动促进健康的最优效果。步行作为人们日常生活中最主要的运动方式,步态数据对于评价人体健康程度具有十分重要的研究价值。随着5G商用的逐步推进,物联网(Internet of Things,IOT)的快速发展带动了人们对体联网(Internet of Bodies,IOB)的探索,基于可穿
【基金项目】
:
国家重点研发计划“运动促进健康精准监测关键技术和专用芯片的研发(2020YFC2003303)”;
论文部分内容阅读
科学的体育运动能够改善人体的健康状况,对人们日常生活中的体育运动进行定量分析,能够有效避免不当运动带来的损伤及达到运动促进健康的最优效果。步行作为人们日常生活中最主要的运动方式,步态数据对于评价人体健康程度具有十分重要的研究价值。随着5G商用的逐步推进,物联网(Internet of Things,IOT)的快速发展带动了人们对体联网(Internet of Bodies,IOB)的探索,基于可穿戴式步态系统的步态评估技术成为当今学者的研究重点。本文采用多传感器数据融合的思想,利用压力传感器及惯性传感器对人类步行过程中的动力学及运动学数据进行采集,并通过相关的算法进行分析计算,给出客观可量化的步态评估。论文的主要研究内容如下:首先,准确的步态相位识别、步态周期分割是对个人步态进行分析的基础。本文提出了 一种基于地面反作用力(Ground Reaction Forces,GRFs)信号的人体步态建模方法,充分利用从8路压力传感器获得的GRF信号,通过模糊逻辑推理实现平稳连续地步态相位识别;充分考虑个人步态的内部差异性,不预设形成个人步态的相位顺序,将获得的步态相位序列用于步态周期分割,为每个人的步态获取一个特定的模型。然后,由于GRF信号仅能给出部分时间度量的估计,引入惯性传感器为步态评估技术提供能够完整概括个人步态表现的指标。为解决空间度量中存在的误差问题,本文引入基于四元数的误差修正算法,通过融合加速度传感器提供的静态低频信息和角速度传感器提供的动态高频信息来准确估计足部方向,同时引入零速度更新(Zero Velocity Update,ZVU)算法对速度进行周期性校正,缓解加速度误差积分引起的不确定性的增长,进一步提高步态空间度量的估计精度。最后,对所提算法进行实验验证,实验结果表明所提的基于GRF信号的人体步态建模方法能够有效区分和量化各种模式的步态;在引入异构传感器数据融合技术后,有效地弥补单一传感器的缺陷,提升步态时空度量的估算精度,充分验证了本文提出的步态评估技术的可行性及有效性。
其他文献
网络异常流量检测是抵御恶意攻击、保护网络可用性和隐私安全的重要手段,对于维护网络安全有着至关重要的作用;而基于流量分类的方法是网络异常流量检测任务中的重要方法之一。近年来,基于表征学习的流量分类方法由于无需人为提取特征、检测速度快且在特定环境下表现优异,因此受到了研究者的广泛关注。但是在部署基于表征学习的异常流量监测模型时,单一网络域内面临着数据不足、标注能力不够、难以检测未见过的异常流量、且原始
随着当代互联网技术的不断革新,越来越多的单位使用互联网软件传输机密数据。互联网应用的不断深入和扩展,也为计算机网络带来越来越多的安全隐患。本系统旨在设计并实现匿名、安全的文件传输管理系统,为用户提供好友管理、群组管理、匿名聊天、文件传输等功能。在Tor(The Onion Router,洋葱路由器)网络中,用户借助匿名通信技术,多层加密通信数据,让流量监控无法嗅探到用户数据和用户身份信息,维护文件
相较于传统的在远端云中心进行数据处理的方式,移动边缘计算(Mobile Edge Computing,MEC)通过将计算和存储能力下沉到网络边缘,提供了高带宽低时延的网络环境,从而能够提高时延敏感业务的服务质量。作为MEC的关键使能技术之一,网络功能虚拟化(Network Function Virtualization,NFV)支持将网络功能与底层硬件资源解耦,在统一的物理基础架构之上配置虚拟网络
由于无线通信设备的增长和网络技术的发展,对频率的需求不断增长。为了在有限的频率资源环境中有效地共享频率,应该进行研究以开发频谱共享技术。传统的频谱共享研究依靠中央机构来验证每个频谱共享交易的真实性,缺少安全的频谱共享机制,这容易受到众多的安全威胁。其次,通过频谱感知,或频谱数据库进行的传统频谱共享机制使用效率并不是很高。最后,由于同频道干扰和其他干扰,自私且理性的频谱所有者不愿在没有适当经济补偿的
近年来,互联网技术快速发展,各类信息剧增,互联网上每天有海量信息在生成、传播和存储。作为人的标识之一的人名,在互联网检索中有非常重要的意义。但由于人口巨多,人名数量巨大,使得进行人物相关文章的搜索时,重名现象严重,搜索引擎不能达到预期的效果,返回的内容中包含大量噪声信息,需要用户去进一步的识别、筛选,这就使用户检索信息的难度大大增加。因此如何设计一个系统,能高效识别人物,消除人名歧义,节省用户搜索
随着工业互联网的发展,带来终端传感设备数量激增,传输与存储的数据呈现爆炸式增长,企业、机构通过数据挖掘能够进行一系列的分析、预测,但传感数据普遍存在数据质量高低不齐的现象,若直接使用,将造成信息的误判,经济、时间等损失。因此应找到一种合适的数据质量评估方法,对数据质量进行评估,让后续的分析、预测等操作有一个良好的数据质量保障。本文研究了数据质量评估的主流方法,重点分析了基于机器学习的数据质量评估法
票房作为衡量电影能否盈利的重要指标,受诸多因素共同作用影响且其影响机制较为复杂,电影票房的准确预测是比较有难度的。目前电影票房预测的研究存在依赖社会媒体舆论信息、影人价值量化方式单一、没有挖掘影人合作关系价值等不足。尤其如果要在电影上映前给出预测,基于社会媒体评论和舆论热度的票房预测方法难以应用。本文提出了一种基于 GBRT(Gradient Boosting Regression Tree)和关
飞机表面蒙皮伤痕是威胁飞行安全的一大主因,因此,航空公司在飞机转航停场期间对蒙皮伤痕进行检测是保障飞行安全的重要工作。目前较为先进的检测方法是基于计算机视觉的伤痕检测法,该方法将采集到的飞机蒙皮图像传输给伤痕检测服务,进行基于人工神经网络的图像处理以识别伤痕类型及位置信息,从而判断蒙皮受损程度,保障飞行安全。由于检修飞机数量多、检修时间短,该方法在图像传输、处理过程中需要进行大量的数据传输和计算。
语音增强作为语音任务的前置预处理技术,在语音识别、语音分离等中得到了广泛的应用。语音增强主要是从含噪语音中去除掉噪声语音,恢复纯净语音。在过去的研究中,主要分为传统算法和基于深度学习的方法。传统的算法包含了许多假设,在低信噪比环境下会出现语音失真。现在基于深度学习的算法被证明效果要优于传统的算法。本文主要工作是提出了基于时域的语音增强算法。过去利用深度学习来进行语音增强时,往往工作在频域,需要将含