论文部分内容阅读
多组分碲酸盐玻璃相对于商用石英光纤具有许多优势,如低声子能量有助于降低非辐射跃迁几率、提高发光效率;高折射率使其具有较大的吸收与发射截面;高稀土离子掺杂浓度可在短光纤中实现高增益;加上较宽的红外透过窗口,宽的发光光谱特性,被普遍认为适合应用于光纤放大器,并可作为中红外波段激光产生及传输材料。此论文基于60TeO2-30WO3-10La2O3碲酸盐玻璃光纤,研究Er3+/Tm3+共掺光纤的宽带发光与Tm3+单掺的放大自发辐射光源特性。 论文第一章首先综述了光纤放大器的原理和研究进展,随后介绍碲酸盐光纤的特点与现今的研究方向,针对Er3+/Tm3+共掺光纤近红外宽带发光及2微米波段自发辐射放大(ASE)光纤光源进行了文献综述,然后提出了本论文的研究内容和研究思路。 论文第二章介绍了碲酸盐光纤的制备方法和性能测试的基础理论,分析铒铥离子共掺系统的能量转移过程,对其速率方程与功率传输方程原理进行了阐述;实验中研究了的无包层芯棒与单包层碲酸盐光纤的近红外发光性能,在长度皆为10 cm时分别获得半高宽(FWHM)为130 nm与145 nm的近红外光谱,并进行了铒铥共掺单包层碲酸盐光纤增益测试,对研究结果进行了讨论。 论文第三章研究了铥离子单掺碲酸盐光纤的放大自发辐射特性,介绍了超荧光与放大自发辐射之间的差异和放大自发辐射的线宽理论,研究光纤端面处理技术及2微米的放大自发辐射光路设计、不同光纤长度时ASE光谱特性(FWHM与中心波长)和斜率效率(ASE输出功率—泵浦光功率),以及不同泵浦功率时ASE光谱特性和输出功率变化。实验发现泵浦光功率增加,ASE光谱逐渐窄化,随光纤长度增加(10、15、34、55 cm),ASE光谱中心往长波移动。其中,长度为34 cm的光纤具较高的斜率效率(4.8%),最大输出功率约34 mW,此时光谱半高宽为45 nm。而在输出功率为3 mW时ASE光谱半高宽可达140 nm。并成功地将这—光纤制备的~2微米放大自发辐射光纤光源应用于1864 nm光纤光栅的刻写。 论文第四章是本论文的结论部分,概括了全文的实验研究结果和创新点,同时指出了存在的不足及需要补充改进之处。