数字图像篡改检测与定位研究

来源 :南京信息工程大学 | 被引量 : 0次 | 上传用户:bd05082052
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
大数据时代,网络及现实生活中充斥着纷繁复杂的篡改图像,使用单一的篡改手段已不能满足当前篡改者对图像视觉质量的要求,篡改者必然使用越来越多、越来越复杂的数字图像处理技术进行图像的篡改伪造,这无疑增添了辨别图像真伪的难度。篡改图像的恶意使用,并借助社交网络进行病毒式传播,对社会、国家、国际信任体系与安全构成巨大的威胁。研发针对篡改图像的检测技术,及时准确地检测虚假消息,对社会、国家,甚至国防安全战略等方面都势在必行。因此,本论文就图像篡改取证这一亟需解决的任务,展开了以下两方面的研究:(1)针对现有彩色图像篡改检测算法篡改操作检测类型单一,定位精确度不高,并且仍需依靠大量的预处理或后处理等问题,本文提出了一种基于预测金字塔多任务网络的彩色图像篡改定位算法。无论使用何种篡改操作或后处理操作,篡改区域的边缘与原图仍存在细微差异,因此本文通过对图像进行不同尺度的块分割,多尺度的表征图像块的统计属性分布,寻求篡改区域与非篡改区域的统计差异,从而形成篡改块的预测金字塔,由粗到细的勾勒出篡改区域的边缘。为了精细化定位结果,引入图像的多层次语义信息,在预测掩膜上采样的过程中,指导网络模型对于篡改区域的分割,最终达到像素级的定位结果。实验表明,所提算法具有不错的鲁棒性和泛化性,同时相较于现有算法,在CASIA,NIST16,Columbia和COVER四个基准数据集上展现出更好的综合性能。(2)针对现有深度学习彩色图像复制粘贴检测算法特征表征效果差,相似性匹配精度低等问题,本文提出了一种基于对比学习差分特征的彩色图像复制-粘贴定位算法。区域相似性比较是复制粘贴检测算法中至关重要的一环,相似性比较的精确度直接决定了检测算法的性能。因此本文通过设计专门的图像表征网络,最大化同一物体的不同变换视图之间的一致性以及最小化不同物体的变换视图之间的一致性来提高网络的特征提取能力,并结合差分思想,寻找最佳图像表征特征,提高相似度匹配的精确度,增强彩色图像复制-粘贴定位算法的性能。实验表明,在四种公开数据集(USC-ISI,CASIA,Co Mo Fo D和COVER)上,所提算法能取得较好的复制粘贴区域定位能力。
其他文献
深度神经网络在图像分类、目标识别等任务中已经取得了显著效果,然而训练集(源域)和测试集(目标域)的数据分布不一致会导致模型的性能大幅下降。领域自适应在解决训练数据与测试数据分布不同方面具有重要的现实意义。本文重点研究在目标域无标签的情况下提取领域不变特征,提高模型对于目标域的分类准确率。现有的域适应方法忽略了目标样本的分类信息,在特征提取过程中生成器往往在分类边界产生有分歧的特征从而影响了模型分类
心理学研究表明图像刺激会唤起人类的不同情感响应,图像情感分类任务旨在运用机器学习模型自动预测观测者看到图像时的情感反映,构建图像情感自动预测模型在社交网络、互动广告推广等场景中具有重要的应用价值。现有研究表明相比于整幅图像,图像的某些局部区域会更易引起人类情感响应,而注意力机制则可以有效学习图像中与任务关联的关键区域。为此,本论文提出了联合视觉显著性的图像情感分类网络模型。具体工作包括两个方面:(
随着社会的快速发展,微信、淘宝、微博等社交媒体用户数数以亿计,通过社交媒体可以发表心情、感想和对各类事件的看法等,并由此产生了大量的社交文本数据。通过对社交文本中的情感信息进行情感倾向挖掘,可以很直观的反映出用户个人的情感倾向和社会舆论问题。在政府舆论监督、企业管理决策、个人情感管理等方面都发挥着重要的作用。目前,针对传统文本情感倾向的分析研究已经比较成熟,但社交短文本的情感分析研究依然还比较落后
深度学习在给计算机视觉领域带来革新的同时,也对社会安全产生着威胁。尤其是近年来由人脸交换技术制作的伪造人脸视频,不仅侵犯了个人隐私还影响了社会安全。目前大量的研究开始专注于检测这类伪造人脸视频,但在检测模型的设计阶段普遍缺乏针对动态瑕疵、纹理瑕疵等伪造人脸特殊性的考虑,导致现有模型难以有效地融合人脸视频的空间与时间特征。另外,缺乏足够的约束会导致模型学习到冗余信息,进而使伪造检测任务上特征的表达精
射频识别技术(Radio Frequency Identification,RFID)已先后在多个领域内成功地应用,给人们带来了诸多的便利。而且随着物联网热潮的兴起,深入到人们日常的生活工作出行中,人们也越来越离不开射频识别等技术。然而,基于射频识别技术的系统工作在开放信道中,往往面临着窃听、重放、去同步等多种类型的安全威胁,在交易或使用过程容易出现隐私信息泄露、财产损失等问题,这将会阻碍物联网技
随着深度学习的广泛应用,通过变脸、换脸或生成对抗网络(Generative Adversarial Network,GAN)等方式生成的虚假人脸在网络中不断传播。因此,研究有效的人脸取证技术变得尤为重要。针对生成人脸检测,当前其研究主要关注整幅人脸图像均为生成的。但在一些现实场景中,一幅生成人脸图像中只是小部分局部区域是生成的,甚至很小部分,其余绝大部分区域都是自然的,例如人脸图像复原、眼镜去除、
数字图像数量的急速增长促使各团体组织和个人,将图像存储和计算处理外包给云服务器。而无防御地上传明文图像到云服务器会带来隐私泄露风险,图像加密又会阻碍数据的有效使用。现有的加密图像检索技术使用户承担了大量计算任务,如特征提取、特征加密、索引建立等,因而研究减轻用户负担的检索方案成为了本论文的重点。为此,本论文提出基于局部二值模式(Local Binary Pattern,简称LBP)的加密图像检索方
近年来,三维点云分析在计算机视觉、机器人以及自动驾驶等许多领域得到了广泛关注。传统的点云分析方法通过人为定义的规则或手工设计的特征提取点云的特征表示。这类方法依赖于启发式的先验知识,因此不能很好地处理复杂的点云场景。随着深度学习技术的蓬勃发展,越来越多的研究人员将这一技术应用到点云分析中,并在各种点云分析任务中取得了显著效果。然而,点云具有不规则性、无序性以及稀疏性等特性,这使得如何高效地提取点云
目标跟踪作为计算机视觉领域的研究热点之一,在现在社会中有着广泛的应用。虽然目前已经提出了很多优秀的算法,但是由于跟踪挑战因素与训练样本的制约,目标跟踪算法在有些方面的表现依然不够理想。本文在相关滤波算法的基础上,针对现有跟踪算法中存在的问题,做了以下工作:为了解决目标跟踪算法在面对长期遮挡后无法识别目标的问题,本文在相关滤波算法的基础上,提出一种基于双检测器系统的长期目标跟踪算法。在跟踪过程中,当
随着互联网的不断发展,已由传统意义下的信息发布平台逐渐演变为一个开放的分布式计算基础设施。2002年面向服务的架构(SOA)的提出,使得“服务”成为开放网络环境下资源封装与共享的核心概念。然而,随着跨企业应用的日益复杂,单一的网络服务已实现不了复杂业务的需求,需要通过将多个满足不同功能的服务按照一定业务流程组合起来,来构建复杂的服务系统(SBS)以满足商业上的逻辑需求。另外,随着轻型智能设备、网络