【摘 要】
:
2011年研究人员意外发现掺硅的氧化铪(Hf O2)薄膜具有铁电性。与传统铁电材料相比,氧化铪具有尺寸微缩性强、与互补金属氧化物半导体(CMOS)工艺兼容的优势,有望成为新一代非易失性存储器材料。研究表明,氧化铪基铁电薄膜呈多晶多相的状态,这成为制备稳定的氧化铪基铁电场效应晶体管(Fe FET)的一大挑战。器件中的介电层可有效减小漏电流,但是铁电介电薄膜结构会造成极化电荷无法完全补偿,从而形成一个
论文部分内容阅读
2011年研究人员意外发现掺硅的氧化铪(Hf O2)薄膜具有铁电性。与传统铁电材料相比,氧化铪具有尺寸微缩性强、与互补金属氧化物半导体(CMOS)工艺兼容的优势,有望成为新一代非易失性存储器材料。研究表明,氧化铪基铁电薄膜呈多晶多相的状态,这成为制备稳定的氧化铪基铁电场效应晶体管(Fe FET)的一大挑战。器件中的介电层可有效减小漏电流,但是铁电介电薄膜结构会造成极化电荷无法完全补偿,从而形成一个较大的退极化场,不利于氧化铪基铁电场效应晶体管信息的存储。另外氧化铪基铁电薄膜由于缺陷的存在容易造成电荷捕获,从而形成内建电场,影响薄膜和晶体管的工作性能。本文采用相场方法主要研究了介电层和空间电荷对氧化铪基铁电薄膜以及氧化铪基铁电场效应晶体管性能的影响,具体研究内容如下:(1)研究了外加电场频率和电阻率对氧化铪基铁电薄膜性能的影响,发现外加电场频率和电阻率越大,矫顽场越大。(2)考虑金属-铁电-介电-金属(MFIM)结构,研究了氧化铪基铁电薄膜的厚度、电阻率、外加电场的频率等因素对该结构整体性能的影响。结果表明,随着铁电层厚度的增加,整体介电性能呈现出从顺电到类反铁再到铁电的转变。外加电场频率越高,电阻率越大,整体剩余极化和矫顽场越大。另外在金属-铁电-介电-铁电-金属(MFIFM)结构中,氧化铝的介入减小了结构剩余极化和矫顽场,考虑氧化铪基铁电薄膜多相共存的情况,发现非铁电相贯穿于薄膜时与实验结果更相符。(3)研究了空间电荷对金属-铁电-金属(MFM)结构铁电性能的影响,发现均匀空间电荷会减小氧化铪基铁电薄膜的剩余极化和矫顽场,非均匀空间电荷会造成氧化铪基铁电薄膜印记现象。考虑MFIM结构时,均匀空间电荷除了减小氧化铪基铁电薄膜的剩余极化和矫顽场外,还会造成印记现象。合适的非均匀空间电荷分布反而可以减弱印记现象,并增大薄膜的剩余极化和矫顽场。(4)建立了氧化铪基铁电场效应晶体管相场模型,研究了介电层种类和厚度、空间电荷对氧化铪基铁电场效应晶体管宏观性能的影响。结果表明:介电层越厚、介电层相对介电常数越小、铁电层和介电层中空间电荷密度越大,存储窗口越小。
其他文献
为深入贯彻习近平总书记关于教育的重要论述,落实立德树人根本任务,合肥市第十中学以《深化新时代教育评价改革总体方案》《关于全面加强新时代大中小学劳动教育的意见》为指导,在《合肥市普通高中教育教学质量评价指标体系》引领下,聚焦目标、关注问题、细化举措、系统规划,将劳动教育作为立德树人的重要维度加以落实,突出多样性、系统性、科学性与实践性的统一,打造基于学校、家庭及社会三位一体、“教-学-评”一体化的“
随着人口数量的快速增长,环境的日益恶化,电能作为一种可再生的二次能源被广泛应用。因此,储能元件的开发越来越重要,其中超级电容器占据重要的地位,超级电容器电化学性能主要取决于电极材料。水滑石(LDH)因独特层板结构、主客体组成可调以及活性位高度分散等特点,展现出较高的比电容和良好的稳定性。通过构筑多维度LDH基电极材料,进一步改善其电荷传递和表面反应活性,获得性能优异的电极材料。本论文通过金属掺杂、
目前我国污染场地存量较大,对其开展场地调查和修复工作耗费巨大。场地调查中一项重要内容是通过采集土壤污染点位明确场地污染状况和修复范围,空间插值方法常用于这一过程。因污染场地受外界干扰大,所采集污染数据通常具有高偏倚性、高离散度,常用的地统计插值方法和确定性插值方法应用于污染场地空间预测时具有其局限性;同时,随着场地调查工作的深入,科学合理的采样策略设计也将发挥越来越重要的作用,需要从采样密度、采样
环己酮是重要的化工原料,是合成己内酰胺和己二酸的主要中间体。目前,工业生产环己酮较大比例的采用环己烷无催化氧化法,氧化阶段控制环己烷的转化率在3.4%左右,获得重要的中间体环己基过氧化氢(CHHP),随后采用加碱工艺催化CHHP分解,环己醇、环己酮总选择性为87%,副产物较多且碱液后处理易造成环境污染。因此,开发一种能在无碱条件下高效分解CHHP的催化剂,对于提高环己烷氧化法的竞争力具有重大意义。
热障涂层体系(Thermal barrier coatings,简称TBCs)已经在航空发动机中得到了广泛的应用。热障涂层体系不仅可以通过提高涡轮进气温度和简化冷却系统从而提高发动机效率,而且,TBC的沉积避免了高温合金直接暴露于高温燃气中,降低了高温合金的表面温度,延长了热端部件的使用寿命。同时,TBCs也是非常脆弱的,顶层陶瓷通常在服役几百小时后出现提前剥落的现象。热障涂层的失效表征一直都是难
由于双酚A(BPA)的疏水性和难降解性,传统的污水处理方法无法在短时间内将其完全降解,因此迫切需要开发新的方法来实现BPA的高效降解。近年来,过硫酸盐高级氧化技术被广泛应用于废水处理中;然而,过硫酸盐与Fe2+的反应过程十分迅速,不易控制,且Fe2+还原性强,可能参与到其他的氧化还原反应继而失去活化过硫酸盐的能力。纳米零价铁(nZVI)可以代替Fe2+活化过硫酸盐,nZVI不论在好氧或厌氧条件下都
新型旋转泡沫洗涤器是在动力波技术的基础上开发的一种新型气液传质设备,可广泛应用于化工、冶金、医药等行业。与常规洗涤设备相比,其具有设备结构简单、气液流量弹性大、传质效率高、经济效益高等优点。但洗涤器内部气液湍动强、流场复杂,很难通过实验获得内部流场信息。运用CFD技术对其进行准确的模拟能有效降低所需实验工作、生产成本,并提高研发效率。同时,模拟结果还能对洗涤器的结构优化提供指导,具有十分重要的工程
面对国内外城市小型燃煤电厂的绿色转型需求,同时考虑氢能利用零排放并且可循环以及大量电动汽车电池的梯级利用,提出了一种基于燃料电池/电动汽车(Electric Vehicle,EV)电池发电厂来零排放小型燃煤电厂的替代方案(以下简称替代方案)。但由于目前的燃料电池发电成本还很高,EV电池对的单体成本和集成成本也是一般技术改造项目难以承受的。因此,本文为了深入挖掘替代方案在经济和技术方面的可行性,进行
泵送吸料性能是衡量泵送系统工作效率的重要标准。泵车在工作时,通常存在活塞吸空、吸料不足及料斗底部积料等现象,严重影响了泵送施工的连续性、高效性,进而对后续混凝土硬化及混凝土结构的耐久性产生较大的影响。因此,为了提高吸料性能及降低能耗,有必要对泵送吸料工艺参数及泵送系统的结构优化进行研究。当前主要采用实验测试方法研究混凝土泵送的吸料性能,虽能获取关于吸料性能的一些结果,但其吸料过程中的骨料运动、气泡
锂离子电池电极材料在充放电过程中会产生较大的体积变形,从而诱导大的扩散应力,使得材料发生断裂或粉碎,会直接导致锂离子电池容量的衰减并且会降低电极材料的循环性能。为了进一步理清锂电池电极材料的失效机理,并对其进行断裂与粉化失效预测,本论文分别进行了完全弹性理论和理想弹塑性理论状态下的分析,借助有限元数值模拟软件,对电极材料的锂化过程进行模拟分析电极材料锂化过程中的应力和应变的演化规律,得到电极材料在