基于ISM和AHP的需求优先级决策模型研究与应用

来源 :北京交通大学 | 被引量 : 0次 | 上传用户:cin_long
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在OA系统运维过程中,某公司信息部门经常接到用户各式各样的需求。所有用户都想快速、完全实现自己的需求。由于时间、资金、人员数量等资源有限,考虑到诸多方面的要求,如何正确处理交付需求的先后顺序,就显得极为重要,这就是需求优先级。但是信息部门常常凭直观经验来判断需求优先级,有时会造成资源分配不合理、需求安排不科学,进而受到用户投诉,对年底的部门评比结果造成一定影响。为改善这种状况,就需要搭建一套判定需求优先级的模型,来辅助信息部门的决策更加完善。本文是以OA系统的需求优先级决策为研究对象。首先运用德尔菲法,通过查阅文献和问卷调研,全面梳理可能对需求优先级造成影响的原因,得到20个指标因素,并对其进行了统计学分析,使得结果可信可靠。与以往直观经验相比,这些指标因素涵盖范围更广、更加全面合理。然后采用定性的解释结构模型方法(Interpretive Structure Model,ISM),分析得到各指标因素之间相互关系,并进行了层次划分。根据解释结构模型得到的指标层级关系,从需求特点、用户、运维团队三方面对20个指标因素使用量化的层次分析法(Analytic Hierarchy Process,AHP)进行分析,得到指标因素的权重,构建需求优先级决策模型。在进行需求优先级决策效果检验时,考虑到指标因素是模糊并且不易衡量的指标,于是结合量化的模糊综合评价,并根据信息部门实际情况,形成两种决策方式。运用决策模型,根据得分高低,对实际需求进行先后排序。参考该排序结果执行后,信息部门的需求工作推进顺利。根据该模型,分析指标因素背后的原因和薄弱点,并提出建议,加以改进,促进工作,形成良性循环。当需求数据积累足够多时,可进行数据统计分析,得到需求特点规律并将其应用于工作,起到预判和示警的作用。与以往信息部门的需求工作相比,本文充分梳理需求优先级的影响因素,并结合使用定性的解释结构模型和定量的层次分析法对指标因素进行处理,得到需求优先级决策模型。该模型是通用模型,可对信息部门的大量需求工作进行排序。在使用该模型决策时,结合实际情况,采用量化的模糊综合评价方法设计出两种决策方式,使得需求优先级决策模型更具实用性。同时,探索需求规律,用以指导工作,提前调配资源。
其他文献
按照课程标准的要求,就核心内容来说,统编《道德与法治》九年级教材主要涉及国情部分。因为这一部分与初中学生的实际生活有一定距离,且涉及较多比较抽象的概念和政策,有不少教师在教学时往往觉得无从下手。有的教师则以保证科学性为由,采取照本宣科的教学方式,将本应生动活泼的道德与法治课变成了学生非常排斥的"训教与口号"课。如
期刊
在城市轨道交通飞速发展的今天,要保证列车安全运行,关键不仅在于对轨道交通系统中基础设施病害的及时检修,相关核心工作人员如列车司机的专业性和机动性也尤为重要。司机能否在列车到站、出发、关门等重要节点做出正确手势是衡量司机工作态度和质量的重要标准。不正确的手势判断将直接威胁列车运行安全,因此对司机手势动作的监控识别十分重要。然而目前该工作主要依赖人工完成,不仅效率低下,而且造成人力资源浪费。因此需基于
随着深度学习技术的发展,目标检测技术的检测精度和速度不断被刷新。目前目标检测技术已被应用于生活的各个场景中,如:智能监控、智慧交通和无人驾驶等。然而目标的时空尺度变化仍然是检测中的难点,因此本文从多尺度特征的角度对这些问题展开了研究,利用空间多尺度特征研究了小目标难以检测的问题,在此基础上又研究了检测算法轻量化的问题,最后利用时间多尺度特征对视频目标检测中帧间信息的有效利用进行了研究。本文的具体研
疲劳识别技术可应用于疲劳驾驶预警、空中交通管制员疲劳监测、重型器械操作员疲劳提醒等领域,以规避疲劳作业潜在的巨大安全隐患。针对现有疲劳识别方法欠缺考虑疲劳个体差异性及依赖于实验室数据的不足,本文研究了真实场景下基于自适应阈值眨眼检测及Xgboost的疲劳状态识别问题。有效的特征提取技术是实现可靠、有效的疲劳状态识别的前提。作为提取眼部疲劳特征的关键技术,现有眨眼检测方法存在较少考虑眨眼个体差异性导
车辆重识别技术也被称为车辆跨镜头追踪技术,其主要目的是从不同摄像头拍摄到的大量道路监控视频中检索属于特定车辆的全部图像。该技术需直接从车辆的视觉外观中提取到有判别性的特征,但是跨摄像头进行图像匹配时车辆图像往往来自于不同的视角,而在不同的视角下车辆的外观变化很大,因此跨视角匹配已经成为车辆重识别任务中一个重要的挑战:一方面,多个不同视角下同一车辆外观差异性大,导致车辆有着显著的类内差异;另一方面,
智能制造在信息系统的性能需求和功能需求方面对目前的制造业提出了崭新的或者更高级别的要求,通过对影响信息系统重要性能—鲁棒性的因素进行分析,根据智能制造信息系统的信息层和物理层之间的深度协作建立智能制造信息系统网络模型,描述智能制造信息系统级联失效过程,从网络可用性角度基于蚁群算法进行仿真实验,提高系统未发生故障的点在级联失效情况下寻找最短路径的能力,从而改善系统鲁棒性。本文主要从以下三方面进行创新
付费会员的经济模式近年在国内各个利于飞速发展,通过付费成为会员可以享受更优惠的价格和更高平直的服务,付费会员的经济模式正成为消费的新常态。付费会员的经济模式通过个人和企业奖励一种正式的、可持续的关系,企业为会员推出了更加优质的服务,会员增加该企业的消费总额和频率。互联网领域会员经济随着生态的竞争而迎来了爆发增长。一方面,全球互联网会员已形成规模,亚马逊的会员用户数在2018年超过1亿。另一方面,随
随着工业4.0概念的兴起,工业领域也正发生着智能化转型的热潮。在实际的工业场景中,借助于云计算和边缘计算技术可以提升工业物联网中生成数据的处理效率,但数据泄露造成的隐私问题也正在损害着人们的利益。针对该问题,众多学者利用基于密码学理论的数学加密方法进行了较多研究并取得了一定的研究成果。但本文方案不同于调研的数学加密等方法,而是从新的角度考虑该问题,利用区块链去中心化、防篡改以及可追溯的技术特性,通
为了增加机器人的适应场景和应用范围,轮腿式机器人应运而生,其中轮腿共同驱动式机器人控制简单,可靠性和地形适应能力一般,轮腿独立驱动式机器人可靠性和地形适应能力强,控制复杂。本文利用单环闭链机构可靠性强,控制方便的特点,将两种单环闭链机构相结合,提出具有两种运动形式的单环闭链变胞机构,根据闭链腿式机器人的布置原则构建可变形轮腿共同驱动式机器人,进行了理论分析、仿真和样机试验研究。首先,将Chebys
基于静息态功能磁共振成像(Resting-state functional Magnetic Imaging,rs-f MRI)的脑指纹是指rs-f MRI信号中存在着独一无二的特征,可以用来表明个体的独特性,然而与脑指纹识别最相关的特征至今仍没有统一的定义标准。人类连接组项目的发布以及机器学习、深度学习的发展,为脑指纹的探索奠定了技术基础。基于rs-fMRI的脑指纹识别,大多采用全部的静态功能连