【摘 要】
:
伴随社会的高速发展,对能源的需求也是与日俱增。化石能源的消耗,导致的空气污染、温室效应和能源匮乏等问题不得不引起人们的重视。另外,中国争取在2060年前实现碳中和的目标,对于清洁能源的使用提出了更高的要求。风作为一种清洁可再生能源,对风速进行精准预测对于提高风力发电效率,指导农业生产和保障大型比赛现场等具有重要意义。本文首先分析了某气象站2017年24个观测点全年的3小时间隔历史气象数据,对气象数
【基金项目】
:
福建省漳州市自然科学基金项目, 基于支持向量机的海面风场精细化预报技术研究(课题编号:ZZ2019J12);
论文部分内容阅读
伴随社会的高速发展,对能源的需求也是与日俱增。化石能源的消耗,导致的空气污染、温室效应和能源匮乏等问题不得不引起人们的重视。另外,中国争取在2060年前实现碳中和的目标,对于清洁能源的使用提出了更高的要求。风作为一种清洁可再生能源,对风速进行精准预测对于提高风力发电效率,指导农业生产和保障大型比赛现场等具有重要意义。本文首先分析了某气象站2017年24个观测点全年的3小时间隔历史气象数据,对气象数据的特征、分布做了初步分析,开展了最大风速预测研究。本文主要工作内容及阶段性成果如下:(1)开展对原始气象数据的整理、分类、清洗等预处理工作。利用线性回归(Linear Regression,LR)、支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)、XGBoost和Light GBM等多种机器学习算法在24个监测站点的数据上分别进行初步预测模型建立。对比模型预测结果发现集成学习算法RF、XGBoost和Light GBM模型预测效果在多个模型评价指标上均优于单一机器学习模型。(2)开展提升模型预测精准性的研究。提出了替换和组合基学习器的模型融合方法。利用Stacking模型融合方法,将模型预测效果较好的算法,如SVM、RF、XGBoost和Light GBM等作为Stacking的基础算法输入,再使用LR算法动态调整各个基础学习算法结果之间的权重,从而达到提升模型预测精准性的效果。在算法应用方面,使用jpmml(Java Evaluator API for Predictive Model Markup Language)将训练好的模型进行跨平台转化,使其可以在后端系统中进行调用。(3)开展面向气象领域需要的最大风速预测系统应用的研究。首先,针对最大风速预测系统运行与构建的繁琐性,提出了基于容器的开发和运行环境。相对于传统的搭建方式,极大提升了其可移植性,保存了我们节点环境配置的模板,提高了硬件资源的利用率和应用之间的隔离性。其次,针对最大风速预测系统的稳定性(Stability)与高可用(High Availability,HA),使用了工业界常用的消息中间件Kafka与协调服务框架Zookeeper,对系统进行解耦,保证了预测系统在接收天气数据时的稳定性和可靠性。利用心跳检测(Heartbeat)和Zookeeper保证系统各个模块的高可用。再次,针对最大风速预测系统数据存储,由于数据产生的持续性与数据格式的特殊性,传统关系型数据库的单机存储无法满足未来的数据存储,提出了在容器环境中部署大数据框架Hadoop和非关系型数据库HBase来存储气象数据。最后,面向领域需求实现了最大风速预测模型,经过初步应用后,得到了用户的认可。
其他文献
在大数据时代,增量变化是一种常见的动态数据形式,如何从具有强不确定性的大规模动态数据中获取有价值的信息,是大数据领域最重要的研究内容之一。三支决策是一种适用于解决不确定决策问题的理论。该理论与粗糙集理论中的集合正域、负域和边界域概念相对应,对应有接受决策、拒绝决策和延迟决策。其中三支决策属性约简在近些年得到了广泛关注和研究。现有的三支决策属性约简算法大多面向所有决策类,在只需获取单个特定类属性约简
随着全球环境污染形势日益严峻,能源短缺问题日益突出,继续以高投入、高消耗、高污染的粗放型发展方式将制约制造业长远发展。实现绿色制造、低碳发展是企业转型升级的必然选择。在绿色制造背景下,如何在企业内部总生产能力不变的情况下,充分利用车间资源,处理好生产中生产效率和能量效率之间的矛盾,协同优化经济指标和绿色指标,开展节能调度成为制造企业绿色发展的关键抉择。与此同时,随着工业4.0浪潮的兴起,制造企业逐
深度估计信息对于自主系统感知环境和估计自身状态非常重要。随着人工智能技术的不断发展,从图像中估计场景深度已经取得了巨大的研究进展。近年来,基于深度神经网络的单目图像深度估计研究成为热点,它们使用深度采集设备进行有监督训练或者利用立体图像对进行无监督训练,从而估计出场景的深度。然而,监督学习深度估计方式由于数据的采集即耗时又昂贵,且相对于相机视图特征信息也是稀疏,而无监督深度估计的精度受到立体重建精
行人再识别(Re-ID)技术一直是计算机视觉和模式识别领域的关键任务。一般将该技术视为图像检索的子集,行人再识别是一种特定的识别技术,其旨在给定特有行人在跨摄像头视频或图像中定位该特定行人。该技术通常结合人脸识别、行人追踪等技术,结合应用于视频监控和智能安防领域。在基于伪标签预测的跨域行人再识别方法中,模型的性能较大程度上依赖于伪标签的质量,并且聚类产生的离群点包含了丰富的知识。急需解决的一个问题
随着科技的发展,人工智能的应用越来越广泛。当前,我国各超市蔬菜的购买、称量、结算过程中,时刻需要人工的参与;我国农产品品质优良、产量大,这也给农产品的市场管理带来了严峻的挑战。目前商户在蔬菜的交易过程中仍采用传统的人工分拣方式,这种方式会消耗大量的劳动力,增加劳动强度,影响经营成本。为了改善此状况,研究设计出一套蔬菜图像识别系统,帮助农民、蔬菜商家对蔬菜进行检测,进而完成分类、称量、结算等任务,这
农作物病害是影响农业经济作物产量和质量的主要危害之一。如何在农作物病害出现之初就能够对病害进行及时的检测与识别,提前防治病害,对农业生产丰收有着至关重要的作用。传统的病害识别方法完全依赖个人的工作经验和肉眼观察,具有识别效率低、主观性强、准确率低以及实时性差等不足。随着信息化技术的不断发展与提高,运用技术手段来辅助开展农作物病害检测与识别成为了一个迫切需求。近年来,深度学习技术方法凭借着其出色的泛
随着《中国制造2025》的全面实施,中国工业现代化进程稳步推进,智能制造已成为研究热点。机床工作过程中产生的切削颤振是制约高性能加工的一个关键问题,会导致工件表面光洁度下降,并且加速刀具磨损,降低机床寿命、可靠性和加工操作的安全性,造成加工成本提高。针对此问题,本文将一种基于深度学习的算法应用于切削颤振在线监测领域,并研发了一套基于神经网络处理器的嵌入式切削颤振在线监测系统。首先,研究了切削颤振在
真空离子镀膜设备是一种处理表面工程技术的设备,被广泛运用于各个领域之中。镀制薄膜的厚度精度是评价设备性能好坏的关键指标,而设备中的膜厚监控系统的控制性能直接决定了镀膜薄膜的厚度精度。目前,在镀制非规整膜系时,普遍采用基于晶体式膜厚监测仪的膜厚控制系统,由于使用的算法较为简单,导致镀膜的薄膜精度不高。因此,将智能算法运用于真空离子镀膜设备中的膜厚控制系统,对提高镀制薄膜的精度和质量,具有广泛的运用前
太赫兹传感技术具有可靠、快速、无标记等优势,在生物传感领域中具有巨大的应用前景与价值。然而当被测样品尺寸远小于太赫兹波长时,样品不能与太赫兹充分地相互作用,这导致原位太赫兹光谱对微量分析物的检测极其困难。超材料是由周期性排列的亚波长谐振单元组成的人造材料,其电磁响应可以通过改变谐振单元的形状、尺寸等参数控制。超材料能通过局域电场增强以提高光与物质相互作用的程度,因此超材料具有出色的检测能力。石墨烯
图像配准是建立同一场景的图像之间的对应关系,在计算机视觉、医学图像处理、材料力学以及遥感等领域有广泛应用。单应矩阵估计是图像配准任务中的关键问题。由于实际成像系统存在几何畸变,线性仿射变换模型不准确,匹配对点坐标构成的是矛盾方程,因此传统方法对于单应矩阵估计并不可靠。深度学习提取大样本的内在规律和多尺度高维特征,通过数据驱动的方式拟合出更可靠的估计模型。在图像配准任务中,光照变化、实际数据缺少标签