论文部分内容阅读
挥发性有机物(VOCs)是大气中一类重要的污染物,会产生一系列环境效应,包括与空气中的氮氧化物反应产生臭氧、引发光化学烟雾、危害人体健康等。对环境中VOCs进行监测和分析是对其有效管控的前提和基础。目前,气相色谱-质谱联用仪(GC-MS)作为主流的VOCs分析仪器,被广泛用于VOCs的环境监测分析。近年来,由于VOCs对环境空气质量影响显著,VOCs的监测要求越来越高,已经从过去仅监测几种代表性污染物到目前重点控制区域要求监测上百种物质。由于环境中的VOCs来源广泛、种类繁多,在分析复杂环境样品时,如果采用既定的VOCs目标物清单来分析,可能会存在污染物漏检,从而无法反映真实的污染情况。基于VOCs日益提高的分析需求和目前目标分析存在的局限,本研究旨在发展一种针对大气中VOCs的非目标筛查方法,并对环境空气中的VOCs进行初步的分析应用。本研究采用吸附管采样,使用热解吸与GC-MS组合方法,发展了一种环境空气中VOCs的分析方法。对某工业园区及附近居民区的大气样品进行了采样分析。结果表明,在36种疑似化合物中通过标准样品确证12种VOCs,该区域大气中苯系物占比最大、其次是苯酚类物质和酯类物质。对环境样品分析实践发现,虽然GC-MS具有配套的数据库,但对大气环境样品中未知VOCs的定性仍然具有很大的挑战。例如,由于VOCs分子较小,不同VOCs质谱分析中有时会包含相同的碎片离子,如果色谱保留时间也相近,会出现定性错误的情况。由于GC-MS质量分辨率相对较低,很难克服定性错误的问题。气相色谱-四极杆飞行时间质谱(GC-QTOF)既保留了气相色谱的分离功能,又具有TOF质谱比较高的质量分辨能力,可以有效地降低VOCs定性错误的概率。本研究采用GC-QTOF建立了一套VOCs的非目标筛查方法。为了获得良好的质谱信号,对离子源温度和电子电离能进行了优化。结果表明,离子源温度在200℃、230、270℃时对质谱信号无显著影响,但电子电离能在15eV、30eV、70eV下对分子离子峰影响较大。70eV便于与质谱库进行匹配,15eV更有利于分子离子峰的获取。基于VOCs的沸点,建立了保留时间预测模型,可以从保留时间层面对物质进行定性分析。最终确定的非目标筛查流程如下:(1)首先对样品中的VOCs在70eV下进行分析,将获得的质谱图与仪器配套的谱图库比对,筛选出可能的候选物;(2)在15eV条件下获取分子离子峰,根据候选物分子离子的准确度误差﹤5 ppm作为阈值鉴定化合物;(3)使用保留时间预测模型,进一步鉴定化合物;(4)最后可以使用标准样品对识别的物质进行确证。将108种标准物质作为未知样品进行非目标筛查流程测试发现,94种物质可以被正确识别,准确率达87%。使用构建的非目标筛查方法对实际环境大气中的VOCs进行了分析,通过质谱库匹配找出59种疑似化合物,根据分子离子峰筛查识别出30种,最终,有23种VOCs通过标准样品确认;其余7种化合物由于缺乏标准样品作为疑似化合物。环境空气样品分析表明,基于GC-QTOF所构建的非目标筛查方法可以用于环境未知样品的VOCs定性识别。