【摘 要】
:
由松散颗粒填充的堆积型多孔介质是重要的建筑保温材料,其内部的流体传热通常被假设为纯粹的导热。然而实际中流体形成的自然对流,会降低材料的保温性能。因此堆积型多孔介质中自然对流的传热规律,以及孔隙参数对传热特性的影响机理,成为重要的研究课题。本文以堆积型多孔介质材料为对象,采用理论分析、数值模拟和实验验证相结合的方法,对多孔介质中RBC对流进行研究,并从脉动效应的角度重点研究了孔隙参数对系统传热的影响
【基金项目】
:
国家自然科学基金面上项目(No.51576051)—粘弹性流体Rayleigh-Bénard热对流稳定性及热量输运的物理机制研究,2016-2019;
论文部分内容阅读
由松散颗粒填充的堆积型多孔介质是重要的建筑保温材料,其内部的流体传热通常被假设为纯粹的导热。然而实际中流体形成的自然对流,会降低材料的保温性能。因此堆积型多孔介质中自然对流的传热规律,以及孔隙参数对传热特性的影响机理,成为重要的研究课题。本文以堆积型多孔介质材料为对象,采用理论分析、数值模拟和实验验证相结合的方法,对多孔介质中RBC对流进行研究,并从脉动效应的角度重点研究了孔隙参数对系统传热的影响机理。RBC系统的热脉动效应,是指流体的脉动运动与系统传热能力的关系。通过研究热脉动的频率特征,建立微观流动结构运动规律与系统宏观时均传热参数的联系,是本文分析多孔介质RBC系统传热变化机理的基本思路。研究时,根据标准空腔RBC系统的数值模拟和试验研究,建立热脉动效应理论,然后使用相关理论分析多孔介质RBC系统传热特性的变化机理。空腔RBC模拟采用LBM方法和改进的网格设置方法,研究了层流至强湍流时RBC系统的热脉动现象。模拟结果显示,层流与强湍流RBC系统热脉动由大尺度环流脉动主导,无量纲特征频率满足Ra-1/6标度律;弱湍流状态热脉动由羽流运动主导,无量纲特征频率满足具有双阶段特征的Ra2/7标度律。以标度律为核心,根据特征频率的转变,可以解释空腔RBC系统中大尺度环流反转等特殊现像的发生机理,从而有效分析系统传热特性的复杂变化。空腔RBC实验则使用与仿真相同的参数与数据处理方法,研究了准二维空腔RBC系统中的温度脉动现象。实验所得温度信号的特征频率标度律,与模拟结果一致,验证了模拟研究所得结论的合理性,并证明了LBM方法在RBC热脉动问题研究中的有效性。最后本文以空腔RBC系统热脉动效应理论为基础,使用统计的方式分析了Ra=10~6~1.5×10~8时不同孔隙率和填料颗粒直径的多孔介质中,RBC系统的数值模拟结果。数据证明,多孔介质RBC系统热脉动效应满足理想状态RBC系统热脉动效应的基本标度律规律,但是孔隙参数对低Ra数系统的传热特性具有更大的影响。根据热脉动效应随孔隙参数变化的基本规律,本文预测了颗粒尺寸过小或孔隙率过低时,多孔介质RBC系统可能在较低Ra范围内发生传热特性的突变,并分析了突变发生的机理与条件。本文提出的研究方法与相关结论,不仅为多孔介质保温材料的结构设计与优化提供了依据,也为其它多孔介质传热问题研究提供了新的研究思路。
其他文献
随着微机电系统和微系统技术的快速发展和实用化进程的推进,对复杂微零部件的高性能加工提出了更高要求。微细电火花线切割加工技术作为一种常用的微细加工手段,具有加工精度高、成本低、不存在宏观作用力和加工材料广泛等优点,并且通过改变微细电极丝走丝方案以及与工件之间相对运动方式,可具备较高加工灵活性,在实现复杂微零部件的加工中展现出一定潜力。而当前微细电火花线切割机床存在功能单一、加工稳定性较差以及加工效率
随着航天技术的飞速发展,空间飞行器轨道安全问题正受到越来越多的关注。目前,针对非合作航天器的寻的制导技术已在宇宙环境探索、卫星在轨维护、空间碎片清理以及太空军事对抗等领域得到了广泛应用。然而,由于受到航天器质量、成本以及探测载荷性能等因素的限制,单一寻的飞行器已难以满足日渐复杂的制导任务对于空间非合作目标的探测与拦截需求。为此,本文借鉴分体式航天器功能分离的思想提出一种新型制导方式—分体式制导,其
在过去几十年中,二阶椭圆方程理论得到了充分的发展.这一类方程在数学,物理,化学,生物,工程,材料等许多领域有着重要的应用.四阶椭圆方程源于桥梁振动理论,在物理学,工程学等领域有着有广泛的应用.然而,与二阶椭圆方程相比较而言,四阶椭圆方程的发展速度却是比较迟缓的.众所周知,二阶椭圆方程具有不同形式的比较原理,因此此类方程的基本理论知识比较完善.然而高阶椭圆方程不具备一般的比较原理.此外,集中应用于二
增强体构型分布是影响金属基复合材料力学与物理性能的重要因素。本文采用有限元仿真技术,对增强体呈网状分布的Si Cp/Al复合材料进行变形、断裂行为模拟、预测了复合材料的力学性能,采用试验对模拟结果进行了初步验证,结果表明,构建的三维模型可应用于增强体网状分布构型的复合材料的性能预测、构型设计和优化。对颗粒均匀分布的相同颗粒体积分数复合材料拉伸行为模拟发现,复合材料的加工硬化率随颗粒尺寸减小而增大,
大型工件表面失效是限制轴承、汽车、机械制造等行业发展的重要瓶颈。在工件表面沉积功能薄膜是延长工件使用寿命、提高性能的有效手段。类金刚石(DLC)薄膜因具有较低的摩擦系数、较高的耐磨性、良好的生物性以及耐腐蚀性等优点而被广泛关注。然而在大型工件表面沉积DLC薄膜缺少合适的等离子体源,且不能按照实际需要区域化沉积薄膜。在众多的DLC薄膜制备方法中,笼形空心阴极具有等离子体密度高、沉积速率快的优点,笼网
视力障碍是当今社会影响人类生活质量的不可忽视因素,变焦镜片具有焦距可调、视野范围广、探测效率高且能够兼顾探测的高效性和成像的清晰度等优点而得到广泛的应用。目前,市场上流行的变焦镜片多为不同焦距的固体镜片在一定条件下组合形成的机械变焦,其构件整体比较复杂、价格昂贵和渐进调焦困难的问题,而液体变焦镜片构造简单、可实现连续变焦,并且可采用电磁、压电、声波等多种驱动方式实现自动化可控变焦。在液体镜片研究领
Ni-25Al金属间化合物,具有抗氧化性好、密度低、导热系数高以及在特定温度区间,屈服强度随温度的升高而升高等特点。有望成为一种优良的高温结构材料,应用于燃气涡轮机的叶片和喷气发动机上。然而,铸态Ni-25Al合金的沿晶断裂导致其室温塑性差,限制了Ni-25Al合金的推广及应用。定向凝固技术可以形成柱状晶以消除其横向晶界,是改善其塑性的良好途径之一,近年来合金在定向凝固过程中施加电场,可以减小增强
铌合金具有高熔点、低密度以及优异的高温力学性能,是新一代燃气涡轮发动机与高超声速飞行器金属热防护系统的重要候选材料。铌合金抗高温氧化性能差是制约其拓展应用的关键难点问题,单一硅化物涂层对提高抗氧化性能已达到瓶颈,而且其辐射防热性和抗熔盐腐蚀性能差,已不能满足燃气涡轮发动机/高超声速飞行器高温辐射热防护与抗高温熔盐腐蚀的迫切需求。针对以上问题,本文以包埋渗工艺制备NbSi2层为高温抗氧化底层;然后采
带外挂细长机翼被广泛地应用在高空长航时无人机中。由于细长机翼的展弦比较大,结构非线性因素在变形中不能忽略,而外挂的运动,以及外挂与机翼的连接都会带来非线性因素。另外当机翼的振动状态在失速区间上时,作用在机翼上的气动力也具有非线性特征。这些复杂非线性因素的相互作用,将使机翼外挂系统的动力学特性变得异常复杂。为了更好地了解机翼外挂系统的性质,从而指导该系统的设计,有必要对带外挂细长机翼的非线性气动弹性