论文部分内容阅读
Shannon采样定理为信号通信和图像处理奠定了严格的理论基础.根据Shannon采样公式,有限带宽信号可以被精确的恢复.Sinc函数是Shannon采样公式中的插值核.同时Sinc函数还被看作是一个理想的低通滤波器.在信号的实际恢复过程中,通常只涉及到Shannon采样公式中的有限项求和,因此就会产生一个截断误差.如果要得到一个合适的截断误差,就需要很多项求和,因而就带来了很大的计算量.另外,大多数信号都不是严格意义上的有限带宽信号,此时若仍把Sinc函数看作是理想的插值核,则缺乏一个合理的解释.为了解决这些问题,人们便开始从两方面对Shannon采样公式的有限项求和进行改进.一方面,构造一个合适的函数将其加入到Shannon采样公式的有限项求和中,来减小截断误差,此时构造的函数被称为收敛因子;另一方面,构造一个具有紧支集的函数,同时该函数需要满足Sinc函数的一些性质.最后在S hannon采样公式的有限项求和中,用构造的函数来代替Sinc函数.本文将从这两方面来考虑Sinc函数的逼近问题.另外,我们将再次论证当线性多步法达到最高逼近阶时,该差分格式是不稳定的.本文分为五章,具体安排如下:1.第一章,我们介绍了Sinc函数、样条函数、Pade逼近和代数函数逼近的相关内容及研究情况.2.第二章,通过研究Sinc函数的Pade逼近,我们给出了Sinc函数的[2/4]型Pade逼近.然后把[2/4]型Pade逼近看作是一个收敛因子,将其加入到Shannon采样公式的有限项求和中.最后和已有的收敛因子进行了数值实验比较,将[2/4]型Pade逼近作为收敛因子的有限项求和也能得到很好的精度.3.第三章,我们给出了Sinc函数的[2/6]型、[0/2]型、[0/4]型和[0/6]型Pade逼近.然后将[2/6]型Pade逼近和另外三类Pade逼近以及第二章中的三类收敛因子进行数值实验比较,[2/6]型Pade逼近作为收敛因子能得到很好的精度.4.第四章,基于3/1型有理样条函数已有的研究,我们研究了Sinc函数的3/1型有理样条函数逼近,并得到了一类含参数的3/1型有理样条函数.通过分析它的频谱在原点处的泰勒展开式,我们得到:当参数值取2时,该3/1型有理样条函数在低频处有平坦谱.另外,还给出了参数的其它几种合理的取值.最后与已有的几种方法通过图像处理进行比较,我们的方法也能得到很好的图像处理效果.5.第五章,我们从指数函数的代数函数逼近角度,研究了指数函数的[1,n]级代数函数逼近以及与线性多步法的联系.最后我们给出了一个新的证明:当线性多步法达到最高逼近阶时,其差分格式是不稳定的.