论文部分内容阅读
非线性抛物微分方程是数学物理学科中一类重要的偏微分方程,比如反应扩散方程,非线性Schr(o)dinger方程等都属于这一类型。此类方程的解析解是很难求得的,而实际问题中的应用又是相当的广泛,因此借助于数值方法来求它的近似解具有非常重要的现实意义。又由于方程的非线性性质,导致解对初值是非常敏感的,数值计算结果也就不容易得到。本文首先对这一类型的偏微分方程,根据方程的非线性性质,将插值系数的思想用于时空有限元方法中,与只用时空有限元法处理非线性问题相比,插值系数时空有限元法更加经济和有效。其原理就是在时间和空间两个方向上,同时选取适当的空间有限元离散和时间有限元离散,然后对方程的非线性项用插值多项式来处理,达到减少计算存储和节省计算时间的目的。然后具体讨论了复空间上的非线性Schr(o)dinger偏微分方程的适定性问题。 本文主要结果包括以下4个方面: 1.利用Sobolev空间中的理论,逼近的插值多项式的性质和Brower不动点定理证明了插值系数时空有限元解的存在性,进而推导出非线性抛物问题变分方程弱解的存在性和唯一性。 2.利用单元正交逼近,庞加莱不等式和逆不等式相结合的技巧证明了非线性抛物微分方程插值系数时空有限元解与精确解之间的时间最大模,空间L2模,即L∞(L2)模的误差估计式。 3.应用上述研究结果,讨论非线性Schr(o)dinger方程的适定性问题,取得了相应的理论结果。 4.最后本文通过给出具体的数值例子验证了非线性Schr(o)dinger方程理论结果的正确性。