论文部分内容阅读
为规避传统表面处理技术方法成本高、污染大、不易加工自动化等缺点,解决铸造铝合金表面硬度低、耐磨性差、零件使用寿命短等突出问题,本文以Nd:YAG固态激光器对Al-Si合金表面处理为研究对象,采用预置法和同步送粉法,运用SEM、EDS、XRD、显微硬度计、摩擦磨损实验机等检测设备系统地研究了铝合表面制备复合增强熔覆层的组织和性能,并对熔覆过程中增强相的生成、溶解、析出及强化机制进行了讨论。主要的研究内容及研究成果如下:1.利用镍基自熔性熔覆材料,采用自动送粉法在AlSi7Mg表面制备出单道复合熔覆层。发现熔覆层中生成了细小的NiAl相、网状结构Ni3Al相以及M7C3相,显微硬度最高为780HV;在室温条件下进行滑动干摩擦实验,发现当载荷为80N时,平均摩擦系数最小,熔覆层平均摩擦系数在0.37~0.43间。对激光熔覆熔池中晶粒的长大、生长速度、生长方向进行了讨论。揭示了熔覆层中晶粒长大的规律以及晶粒形貌呈梯度变化的机理。2.利用Al-Ti-C粉熔覆材料,采用预置法在AlSi7Mg表面原位制备多道TiC复合增强熔覆层。发现熔覆层中生成了颗粒状尺寸约为1μm的TiC和尺寸约为6-10μm的Al3Ti强化相;显微硬度呈梯度分布,最高为824HV,在离熔覆层表层0.25mm处,显微硬度快速降低;对熔覆层中热能密度分布进行讨论并对熔覆层的稀释率进行计算,发现本实验中圆形光斑能量密度遵从高斯分布,得到的熔覆层平均稀释率仅为3.5%。3.在镍基自熔性熔覆材料中加入WC颗粒,采用自动送粉法在AlSi7Mg表面制备出WC/Ni基复合增强熔覆层。利用Marangoni效应揭示WC颗粒在熔覆层中的分布机理。复合增强熔覆层中,生成AlNi、Al3Ni、M7C3、M23C3等相;熔覆层显微硬度值呈梯度分布,最大值约为1100HV。室温条件下进行干滑动摩擦实验,在载荷低于60N时,磨损率随载荷的增加而增加,当载荷达80N时,对磨副材料发生转移,磨损率下降。在20N和40N的条件下,平均摩擦系数基本保持在0.4左右;当载荷为60N时,平均摩擦系数降低到最小值0.137;当载荷增加到80N时,平均摩擦系数升高到0.67。对WC颗粒在熔覆层中的烧损情况进行了分析与讨论,揭示了WC烧损分别以熔解扩散式和溃散式烧损的机理。4.对激光熔覆工艺中裂纹、气孔、球化、高稀释率等缺陷的产生机理及其控制措施进行了分析与讨论,得到如下结论:裂纹主要分为热裂与冷裂两类,热裂由于熔覆层中过冷度过大、生成脆性相、物相间热膨胀系数及其体积间的差异而产生的;冷裂主要由于残余应力得不到有效释放而产生的。科学设计熔覆材料的成分,控制增强颗粒的形貌、尺寸和分布等方法是改善热裂的途径;热处理是改善冷裂缺陷的最有效方法。熔覆层中气体来源于冶金反应生成气和外来气体(保护气、载粉气以及粉体中水气),适当提高激光功率、减小扫描速度以及合理的熔覆材料成分是改善熔覆层气孔缺陷的方法。球化缺陷分为熔覆层内金属颗粒球化和熔覆层表面金属球化两种,熔覆层内金属颗粒球化主要是因为比能量过小,造成金属颗粒吸热不足而球化,影响熔覆层性能。熔覆层表面金属球化是由于熔体温度过高,金属液滴在熔体表面发生Leidenfrost现象,使金属液滴在熔覆层表面凝固,影响熔覆层表面质量。控制激光比能量,设计熔覆材料尺寸与成分能显著改善球化缺陷。稀释率的计算分为实测成分计算法和几何尺寸计算法,其影响因素包括:激光功率、扫描速度、送粉速率以及熔覆层成分。激光熔覆过程中,科学设计激光熔覆材料、选用低激光功率、高扫描速度和高送粉率能得到低稀释率激光熔覆层,其中,提高送粉率是降低稀释率的最有效方法。