论文部分内容阅读
SnO2是一种常见的电阻式半导体传感器,因其具有稳定性好、可检测气体种类多等优点而被广泛地应用在环境、安全、能源等领域。本实验采用电沉积的方法,用M273电化学测量系统,在以铂电极为辅助电极,饱和甘汞电极为参比电极和ITO导电玻璃为工作电极的三电极体系内,以SnCl2和柠檬酸钠的混合溶液作为电解质溶液,制备了Sn薄膜,通过在空气中高温氧化制得SnO2。将制备的SnO2薄膜置于AgNO3溶液中使用电沉积的方法在表面电沉积Ag,便可制备得到Ag/SnO2。用X射线衍射分析(XRD)和扫描电子显微镜(SEM)分析观察了SnO2薄膜的结构和形貌。研究了电解质溶液浓度,电沉积时间,沉积电压,氧化时间,氧化温度对Ag/SnO2薄膜的影响。通过正交实验得出最适宜的电沉积条件和氧化条件:电压为-1.0V,电解质溶液的浓度为7g/L,电沉积时间为5400s,氧化温度为600℃,氧化时间为10h。在上述条件下制备的SnO2膜为晶态结构,表面均匀且多孔,适合作为气敏性材料。XRD检测表明沉积产物经氧化后全部转变为SnO2。在掺杂Ag的过程中,电沉积Ag的条件为:电解质硝酸银溶液浓度为5g/L,沉积时间为600s,沉积电压为-1.4V,干燥Ag/SnO2薄膜的温度为200℃,时间为30 min。用自制的检测装置测试Ag/SnO2薄膜对H2和H2S气体的灵敏度,结果表明掺杂Ag提高了SnO2的灵敏度,不掺杂的SnO2在室温下不能检测H2,掺杂后对2000μg/g的H2的灵敏度为12。不掺杂的SnO2对H2在300℃时灵敏度最高,测定下限在100μg/g~200μg/g之间。掺杂后对H2的灵敏度在175℃时最高,检测限可以达到50μg/g。不掺杂的SnO2对H2S在250℃时灵敏度最高,测定下限为20μg/g, Ag/SnO2在120℃时对H2S响应灵敏度最高,最小检测到1μg/g。根据浓度和灵敏度的关系曲线可以发现,Ag/SnO2对气体的响应灵敏度随气体浓度的变化成线性关系,易于实现对有害气体的定量测定。