论文部分内容阅读
本论文以工业生产废渣——粉煤灰及高炉渣为原料,以硫酸法钛白生产废酸为主要改性剂,制备了改性粉煤灰和改性高炉渣,并分别与硫酸法钛白废渣复配,处理印染废水。为研究反应的浓度、时间、温度、pH值及氧化剂用量等的影响,利用正交实验的原理,对粉煤灰、高炉渣进行了改性条件实验和与钛渣复配条件实验进行设计,通过对模拟印染废水处理效果的比较,选取了最佳改性条件和最佳复配条件。本文利用多种分析方法及现代测试技术,对钛渣和改性后的粉煤灰、高炉渣的性能进行了研究:用BET氮气吸附法测定比表面积;用激光粒度散射仪测定钛渣、改性粉煤灰及高炉渣的粒度分布情况;用电泳技术研究原粉煤灰和改性后粉煤灰及高炉渣在水溶液中颗粒表面的电化学特性及影响因素;用透射电镜技术观察和研究改性粉煤灰的结构和外貌特征;通过对模拟印染废水、实际印染废水的处理,研究了新型复配脱色剂对各种印染废水的处理效果以及在印染废水处理中的最优条件及影响因素;最后,探讨了改性粉煤灰、高炉渣和复配脱色剂在水处理过程中的作用机理及性能。 实验结果表明:工业废酸浓度为1mol/L、反应温度为50°、反应时间30min时,改性粉煤灰的性能最好;盐酸与工业废酸浓度比为1.0mol/L:10.mol/L、反应温度为60℃、反应时间40min时,制得的改性高炉渣的性能最好:分别用改性的粉煤灰及高炉渣与钛渣复配,制备的新型脱色剂的pH适用条件较单一吸附剂宽,对废水的处理效果也更为理想。最佳脱色条件为:脱色反应时间为60min,反应温度为常温,复配脱色剂配比为钛渣:改性粉煤灰=1:2,pH5-8之间;相同的反应时间和反应温度下,钛渣与改性高炉渣复配比为1:1,pH 5-8之间。 表面积测定结果表明,改性后粉煤灰和高炉渣的比表面积分别与原粉煤灰和高炉渣相比变化不大;粒度测定结果表明,随着改性温度的升高,酸浓度增高,粒度逐渐变小;随着酸的浓度增大和温度升高,改性吸附剂吸附性能有一个逐渐提高又逐渐下降的现象,粉煤灰更加明显;微电泳技术测定钛渣、改性后粉煤灰和高炉渣的表面带正电荷(原粉煤灰和原高炉渣带负电荷-14.5mv),随着改性剂工业废酸和改性温度的不同,正电量不同;透射电镜和扫描电镜研