【摘 要】
:
非线性光学的发展很大程度上得益于新型光学材料的出现和应用。近年来,非线性光学材料发展非常迅速,除了常规的体材料以外,微纳结构材料的发现使得非线性光学材料的范围拓展到了纳米尺寸,在这其中核壳纳米材料为非线性光学的发展带来了新的契机。一般情况下由于核壳纳米粒子具有优于单一金属纳米粒子的性能,因此在电子、光学、催化和微电子学等领域得到了广泛的应用。而在非线性光学领域,核壳结构粒子因其比单组分的纳米粒子具
【基金项目】
:
国家自然科学基金; 江苏省自然科学基金;
论文部分内容阅读
非线性光学的发展很大程度上得益于新型光学材料的出现和应用。近年来,非线性光学材料发展非常迅速,除了常规的体材料以外,微纳结构材料的发现使得非线性光学材料的范围拓展到了纳米尺寸,在这其中核壳纳米材料为非线性光学的发展带来了新的契机。一般情况下由于核壳纳米粒子具有优于单一金属纳米粒子的性能,因此在电子、光学、催化和微电子学等领域得到了广泛的应用。而在非线性光学领域,核壳结构粒子因其比单组分的纳米粒子具有更优的非线性光学性质而成为研究的焦点。本文主要研究了Ag、ZnO纳米粒子以及Ag@ZnO核壳纳米粒子的非线性光学效应,主要创新点在于:第一,使用液相激光烧蚀法在不同烧蚀时间下制备了Ag、ZnO纳米粒子和Ag@ZnO核壳纳米粒子;第二,利用闭孔和开孔Z-扫描表征技术,研究了三种纳米粒子非线性折射效应和非线性吸收效应;第三,利用闭孔和开孔Z-扫描技术,研究了不同壳层厚度的Ag@ZnO核壳纳米粒子的变化规律。本文的主要研究内容包括:1.详细介绍了液相激光烧蚀法及其机理,核壳纳米微结构的制备方法以及它们的非线性光学研究现状。介绍了Z-扫描测量技术,分析了闭孔和开孔Z-扫描表征技术特点。以标准样品Cd S和CS2为例,校准了Z-扫描测量系统,证明了Z-扫描系统的可靠性和灵敏性。2.用液相激光烧蚀法制备了Ag、ZnO纳米颗粒和Ag@ZnO核壳纳米颗粒并进行了相应的表征。首先,通过液相激光烧蚀法成功制备了Ag、ZnO纳米颗粒和Ag@ZnO核壳纳米颗粒;其次,使用透射电子显微镜、X射线衍射仪、紫外-可见-近红外吸收光谱以及X射线能谱仪对制备的三种纳米颗粒的形貌、晶体结构、光学性质与元素分布分别进行了表征分析;然后,重点分析了核壳纳米颗粒的XRD图像、TEM图像以及其吸收谱;最后,给出了核壳纳米结构的合成机制。3.研究了Ag、ZnO纳米颗粒和Ag@ZnO核壳纳米颗粒的非线性光学性质。首先,在800nm飞秒脉冲激发下,Z-扫描实验测量了三种纳米颗粒的非线性折射系数的大小;其次,研究了三种纳米颗粒的非线性折射系数随光强变化的规律,分析了三种纳米颗粒未出现非线性吸收效应的原因;然后,重点分析了核壳纳米结构光学非线性增强的机制;最后,探讨了核壳纳米颗粒在光开关中的应用。4.研究了不同烧蚀时间下制备的Ag@ZnO核壳纳米颗粒的非线性光学性质。首先,通过液相激光烧蚀两步法在不同烧蚀时间下合成不同壳层厚度的Ag@ZnO核壳纳米颗粒;其次,使用透射电子显微镜、X射线衍射仪、紫外-可见-近红外吸收光谱对制备的核壳纳米颗粒的形貌、晶体结构、光学性质分别进行了表征分析;最后,利用在800nm波长的飞秒脉冲激光下进行Z-扫描实验,研究了核壳纳米颗粒三阶非线性折射率随着壳层厚度变化的规律。
其他文献
自1994年纳米孔技术的概念提出以来,凭借实验操作便捷、超高通量、检测精度极高、信号可重复性好,固态纳米孔广泛用于检测病毒、细胞及金属颗粒等,在病毒检测、基因测序、疾病预防等方面有极大的应用潜力。本课题使用固态纳米孔对纳米颗粒进行了表征性实验研究。借助这项研究发现一般性规律,揭示潜在的物理图景,也侧面简化了生物分子的过孔情况,为生物颗粒检测研究提供了必要参考。主要研究内容及成果如下:1)完成了纳米
生物膜离子通道在细胞及生物个体内发挥着巨大的作用,对离子通道内离子迁移规律的研究有助于探究细胞及生物体各项生命活动的具体过程及原理机制,对药理学的发展及新药研发等领域有着极为重要的意义。纳米孔传感技术,可检测离子通过纳米通道易位时的电学变化情况。本课题研究制造小尺度纳米通道用以模仿离子通道,并对离子在通道内的迁移规律做初步探究。主要研究内容如下:1)制备小尺度纳米通道的关键技术研究。基于介质电击穿
由于编织工艺的复杂性和生产过程的差异性,导致复合材料具有诸多不确定性。为得到准确的复合材料结构动力学模型,需要全面考虑复合材料结构参数的非均匀性和随机性。因此,研究复合材料不确定性参数识别方法,已经成为现代工程科学的内在要求。本文针对复合材料不确定性参数识别方法,主要开展了三方面的研究工作:首先,针对复合材料不确定性弹性参数场描述方法开展研究。基于K-L级数对复合材料弹性参数场进行展开,提出一种基
在人们的日常生活中,细菌几乎充满每个角落,其中一些致病的细菌会威胁人们身体的健康。因此,实现材料的抗菌功能化有非常重大的意义。通过材料的表面处理可以实现材料的抗菌化,这成为现在抗菌材料研究的主要方向。本文以6063铝合金作为研究的对象,首先运用阳极氧化工艺再合金表面制备了多孔膜,然后以硫酸阳极氧化膜作为交流电沉积Ag的模板,成功制备了抗菌功能膜。综合运用各种测试手段,系统地研究了电解液类型、氧化电
目前白光LED器件普遍采用蓝光GaN芯片激发黄色荧光粉制备而成,器件显色指数不高。为提高显色指数可将多种颜色荧光粉混合后制备白光LED,但这种荧光粉混合物普遍存在相位分离、色度偏移等缺点。利用紫外LED激发单组分的白色荧光粉是解决上述问题有效办法之一,而制备高荧光量子效率的白色荧光粉就成为该法的关键。铅基卤化物钙钛矿材料具有独特的缺陷容忍性以及荧光波长可调、荧光量子效率高等优点有望用于高荧光量子效
纳米孔主要分为固态纳米孔和生物纳米孔。固态纳米孔的成本相对较低,并且其机械性能更加优异,因此它在纳流体器件设计上与离子输运的分子动力学模拟上更具优势。本文重点分析研究了氯化镧溶液里的离子输运反应过程,以MD模拟仿真的模式,分析研究了影响氯化镧溶液在纳米孔里输运的主要因素。主要研究内容和结论如下所示:氯化镧溶液浓度对溶液离子电流的影响。对于部分单价和二价离子,离子电流一般随着溶液浓度的增加而增加,并
全无机卤化物钙钛矿由于荧光量子产率高、荧光发射峰窄、发射波长可覆盖整个可见光区等优异光学性质,成为光电功能材料领域热点材料之一。掺杂是调控纳米晶光电性质的重要办法。以二维卤化物钙钛矿为宿主材料进行掺杂,由于二维钙钛矿较强的激子结合能以及较弱的电磁屏蔽作用将有助于增强宿主-杂质间相互作用,从而展示出与掺杂三维钙钛矿不同的光电性质。鉴于掺杂卤化物钙钛矿大多采用三维纳米晶宿主的研究现状,本论文将致力于二
光场的操纵一直是光学领域内重要的研究目标。在传统光学中,利用光波在介质中传播时所累积的相位可以实现对光场偏振态、相位等特性的操纵。然而,自然界中已有材料的折射率有限,且利用光波在已有材料中的传播光程变化实现光学调控的光学系统大多质量体积庞大。在此基础上,科研人员提出了一种新的基于光学超表面调控光场的方法。光学超表面是亚波长散射体的二维阵列,可以用于修改光的不同特性(相位、偏振、强度等)。亚波长散射
卷曲二维材料得到的一维纳米结构不仅能继承二维材料的优异性质,还会表现出专属于一维纳米结构的本征物理或化学性质。碳纳米卷和二硫化钼纳米卷已经作为优异的一维纳米材料获得了广泛的研究。基于此,本文以磷烯为研究对象,通过第一性原理计算系统研究了不同大小、层数和手性的磷烯纳米卷的稳定性和电子结构等性质。主要结论阐释如下:(1)黑磷纳米卷的稳定性和电子结构。黑磷是继石墨烯和二硫化钼之后又一个引起研究者们广泛关
超黑材料一般指光反射率小于1%,吸收率大于99%的材料。由于能够捕获几乎所有的入射光,超黑材料在航空航天、军事和能源等领域获得广泛应用。现有的超黑材料主要包括具有低折射率的碳基材料及具有特殊表面结构的镍磷合金、黑金和黑硅等材料。但大多数材料的制备方法复杂,成本高昂,且仅能在相对较窄的波段范围内表现出超黑的特性。鉴于此,本课题尝试采用简单易行的动态氢气泡模板(DHBT)法开发具有宽波段超黑性能的新金