数字半群的Frobenius数及间隙的均匀分布问题

来源 :安庆师范大学 | 被引量 : 0次 | 上传用户:lftobto
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
数字半群在环域结构中有着重要的影响,尤其是在Frobenius数和亏格方面,而数字半群的间隙问题也同样有着重要的作用及研究意义。一方面本文研究了嵌入维数为5的数字半群,在〈a,a+k,a+4k〉/d的数字半群的基础上做形变,研究形如〈a,a+k,a+5k〉/d的数字半群,通过利用Apéry集的相关引理,计算证明得出该数字半群商的Frobenius数和亏格的计算公式。另一方面本文研究了重数为4的数字半群。重数为2和3时,数字半群的间隙均匀分布问题已有结果,结合现有结果,本文推广研究了重数为合数4时,数字半群的间隙均匀分布时所需满足的条件,并引进关键代数m,得出m与数字半群间隙均匀分布所呈现的关系。本文的内容分布主要如下:第一章,介绍了本文的研究背景和意义,以及本文的研究进程及主要结论。第二章,主要介绍了数字半群的一些基本理论及定义。第三章,介绍了特殊的数字半群及其特性。第四章,主要介绍了数字半群商的结构,以及一类特殊的数字半群,并计算了在给定条件下其Frobenius数和亏格的计算公式。第五章,主要介绍了数字半群间隙的均匀分布问题,并且证明了在重数为4时数字半群间隙均匀分布的条件。
其他文献
家庭被认为是个人的情感发展和成长的重要动因。近年来,社会各界人士也越来越重视家庭对个人成长的影响。家庭亲密度作为直接反映家庭成员之间的情感联结程度的标准,得到了广泛关注,而积极情绪能拓展建构个人资源,对个人的成长也有重要的意义。本研究通过问卷调查马鞍山市某中学的557名初中生的家庭亲密度和积极情绪,探究初中生的家庭亲密度和积极情绪的现状,并研究两者之间的关系,根据积极情绪拓展建构理论、情绪ABC理
学位
倘若我们认为教学是教师指导和帮助学生学习的过程,且在这一过程中,学生的思考和表达都是不可忽视和不可替代的,那么我们就应该承认,教学过程中需要等待。教学等待,是指教师在课堂教学过程中的一些关键时刻做出适当停留,给予学生充足时间思考后再作答的一种教学行为。然而,在当下的很多课堂上,由于教师过度追求教学过程的流畅、效率,忽视学生的主体性,教学等待这一环节在教学过程中“销声匿迹”了。我们认为,教学等待是一
学位
判断一个给定的图是否具有某种性质一直是图论的热点话题。因为图的谱可以很好地反映图的结构性质,并且易于计算,所以近年来利用图谱理论研究图的结构性质越来越常见,得到了很多重要结论。在化学图论中,我们用分子图来描述化学分子的拓扑结构。拓扑指数是理论化学中的一种拓扑不变量,它们是不依赖于图的画法和标号的实数,在一定程度上反映了化学分子的结构性质,因此拓扑指数也被用来刻画图的各种性质。本文分别从谱半径、无符
学位
随着全球新一轮科技革命与产业革命的兴起,商业秘密已日益成为了现代企业中最具价值的资本所在,从而决定着现代企业的核心市场竞争力和可持续发展能力。随之而来的则是涉密雇员为谋求自身利益的最大化而选择跳槽或离职创业。在跳槽或离职的过程中,前雇员利用泄露原雇主商业秘密的方法获取自身利益的不法行为也日益猖獗,严重阻碍了企业技术创新与经营创新,甚至威胁到市场经济的有序发展。我国为保护商业秘密做出了一系列行之有效
学位
随着时代的发展,联合国教科文组织,于1996年发布了《教育——财富蕴藏其中》,在这一书中,提出学会认知、学会做事、学会共处和学会做人等类似核心素养的概念。在《普通高中数学课程标准(2017年版2020年修订)》指出立德树人是我国教育的根本任务,进而提出了以学生的发展为本,培养和提高我国学生核心素养的基本要求。提出了数学学科的六大核心素养,学生能够适应终身发展和社会发展的必备品格和关键能力。通过学科
学位
银缕梅(Parrotia subaequalis)是中国特有的第三纪孑遗植物,先后被列入国家I级重点保护植物名录和《全国极小种群野生植物拯救保护工程规划》(2011-2015年)。由于该种分布区狭窄分散、自身遗传困难、加之人类干扰,使得该种野生资源极为稀少,针对性保护工作急需开展。为了更好的保护银缕梅,提高种群数量,本研究从种子萌发、组织培养以及人工种群野外回归三方面进行研究,试图为该种的人繁及种
学位
本文主要研究了分数阶神经网络的同步行为,在神经网络模型中同时考虑了两种不同的时滞.Caputo型分数阶导数可以看作是Laplace变换意义上的整数阶导数的推广,在工程应用中也比较方便.本文采用了Caputo型分数阶导数的概念,结合神经网络建立数学模型.利用不等式技巧,推导了所构建模型的有限时间同步、准投影同步以及准一致同步的充分判据.同时,通过数值模拟验证了所得结论的可行性和合理性.首先,构建了具
学位
图谱理论是代数图论的重要组成部分,它在其他相关学科有着极为重要的应用.谱极值问题是近年来图谱理论研究的热点问题,学者们更热衷于研究图的谱半径达到最大或最小时所对应的极图.许多学者最先研究图的邻接矩阵和拉普拉斯矩阵的相关性质,后来许多学者开始探索图的无符号拉普拉斯矩阵的相关性质.而在2017年,Nikiforov提出Aα-矩阵的概念后,学者们纷纷把目光转移到利用图的Aα-矩阵来研究图的一系列相关性质
学位
在当今新的教育体制改革背景下,国家出台的多项政策都表明了要改变以往重结果、重分数、重甄别的评价导向,将综合评价深入到教学实践中。对于高中物理学科来说,高中物理学习评价是以学生的发展为根本、基于物理学科核心素养的评价,发挥着促进学生学习和改善教师教学的重要作用。当前物理教学的课程目标以物理学科核心素养为主,包含4个不同的维度,是对三维目标的凝练与升华,高中物理课程标准中多次强调了评价的重要性,注重以
学位
自2004年法治政府概念首次提出以来,政府职能转变始终是法治政府建设的重要内涵之一。党的十八届四中全会明确提出“全面推进依法治国,基础在基层,工作重点在基层”。基层政府职能转变,作为我国政府职能转变这一重点工作的排头兵,尽管其为法治政府建设不断贡献着丰富的实践探索与经验积累、发挥着主力军与示范岗的基层效应,但与此同时,面对基层政府在职能转变中暴露出的诸多问题,也恰恰从不同程度上反应出基层政府是政府
学位