论文部分内容阅读
高熵合金CoCrFeMnNi凭借其特殊的简单FCC固溶体结构、不倾向于生成金属间化合物等杂质相和其优异的力学性能、耐磨耐蚀性能等特点而受到广泛关注。本文通过理论推导与实验验证相结合的形式,尝试以纳米碳球作为添加物混入高熵合金CoCrFeMnNi粉末中,并通过激光熔覆试验使两者结合形成熔覆性能、力学性能以及耐磨耐蚀性能良好的涂层材料CoCrFeMnNi Cx。本文首先通过理论计算,研究了形成固溶体所需要的晶体结构、原子尺寸、电负性、混合熵混合焓等热力学条件,并通过总结前人对CoCrFeMnNi高熵合金的制备工艺和强化手段,确定本实验的参数变量分别为激光功率(3.7 k W和4.2 k W),激光扫描速度(120 mm/min,200mm/min,350 mm/min和400 mm/min)以及涂层材料的成分CoCrFeMnNi Cx(x=0,0.03,0.06,0.09,0.12和0.15)。涂层制备完毕后,通过宏观观察、XRD、OM、SEM、EDS、EPMA等方法分析测试其相结构、微观组织及元素分布等特征;通过显微硬度计、摩擦磨损试验机和电化学工作站等测试涂层相应的力学和耐磨、耐蚀性能。结果显示,激光工艺参数的改变对相结构并无明显影响,但随着激光功率的增大或扫描速度的降低,涂层的稀释率升高,微观组织变得粗大且部分柱状晶区被胞状晶区取代,涂层硬度也迅速降低。一般而言,扫描速度越快,涂层硬度越高,导致其耐磨性能越好。然而,由于过快的激光扫描速度导致涂层的熔覆性能较差、表面质量并不均匀,这使得在400mm/min的扫描速度下获得的涂层耐磨性能变差。C含量对激光熔覆涂层的宏观形貌有着一定的影响,随着C含量的增加涂层的熔覆性能变差,涂层表面质量变差且与基体的结合不紧密但涂层的稀释率降低。随着C含量从0增加至0.09,涂层中产生碳化物M23C6相并逐渐增加;但在C含量从0.09增加至0.15时,碳化物M23C6相从XRD中消失。涂层的微观组织随着C含量的增加先变细小而后恢复粗大状态,同时在C含量增加至0.12和0.15时,涂层的中上部原本为胞状晶位置处形成粗大的树枝晶。在C含量为0.03~0.09时,C元素的主要存在形式为与金属元素Fe、Cr形成的碳化物M23C6,且主要分布在晶界处;在C含量为0.12和0.15时,C元素主要以单质形式存在。在未添加C原子时,熔覆层的平均硬度较低,为183.2 HV0.2;随着C含量的增加,涂层硬度逐渐增加,并在x=0.09时熔覆层平均硬度达到最大值223.48 HV0.2;随后继续添加C原子,涂层的硬度开始逐渐下降,并在x=0.15时,硬度达到195.04 HV0.2。受到碳化物产生和摩擦磨损机制变化的影响,高熵合金的耐磨性能随着C含量的增加,大体表现出先增强后减弱的趋势,并且在C含量为0.15时,合金表现出了短时间内极强的耐磨性能。无论C含量的多少,高熵合金均表现出明显的钝化效应,这说明其具有良好的耐腐蚀性能。随着C含量的增加,CoCrFeMnNi Cx高熵合金的耐腐蚀性能先增强后减弱,并在C含量x=0.09时取得最小的腐蚀速率0.027 mm/a。