【摘 要】
:
为满足电力系统削峰填谷的调节需要,实现可再生能源的大规模稳定应用,储能技术不可或缺,而压缩空气储能(CAES)系统被认为是最有发展前景的大规模物理储能技术之一。涡轮是压缩空气储能系统释能阶段的关键核心部件,其性能对储能系统效率具有决定性影响。由于压缩空气储能系统要及时对用电负荷的变化做出响应,因此其涡轮常运行在频繁启动和停机过程下。在涡轮启动过程中,涡轮的转速从零至额定转速,其内部流场表现出强烈的
【机 构】
:
中国科学院大学(中国科学院工程热物理研究所)
【出 处】
:
中国科学院大学(中国科学院工程热物理研究所)
论文部分内容阅读
为满足电力系统削峰填谷的调节需要,实现可再生能源的大规模稳定应用,储能技术不可或缺,而压缩空气储能(CAES)系统被认为是最有发展前景的大规模物理储能技术之一。涡轮是压缩空气储能系统释能阶段的关键核心部件,其性能对储能系统效率具有决定性影响。由于压缩空气储能系统要及时对用电负荷的变化做出响应,因此其涡轮常运行在频繁启动和停机过程下。在涡轮启动过程中,涡轮的转速从零至额定转速,其内部流场表现出强烈的非稳态特性,会对叶片产生非稳定气流激振力,引起叶片振动,对涡轮造成较大安全隐患。涡轮内部流场结构是分析涡轮气流激振的基础,对涡轮的安全运行至关重要,因此本文以某MW级压缩空气储能系统的向心涡轮为研究对象,采用全三维计算流体动力学(CFD)方法,开展了启动过程向心涡轮内部流动特性研究,主要研究内容如下:1.完成了针对压缩空气储能涡轮启动过程三维流场数值模拟方法验证。将向心涡轮启动实验过程离散成一系列典型工况点,并对其进行定常及非定常计算,通过与实验结果进行对比,表明该研究方法虽在启动初始阶段与转速稳定阶段存在一定误差,但仍能够整体上反映启动过程的效率变化特征。2.依据启动实验工况的计算结果,研究了向心涡轮内部流动损失变化特征、涡系演化特征和流动演化机理,并分析了非定常效应及动静干涉效应,发现在启动过程中动叶进口攻角逐步减小,动叶载荷逐渐向下游扩展,动叶流道内部通道分离涡与端壁前缘涡及其对应的流动损失区在横向压力梯度下逐渐向叶片吸力面迁移并缩小,此外动静干涉效应在启动加速段对涡系的形态影响最大。3.以启动过程叶轮非定常气动载荷作为边界条件,进一步建立有限元分析计算模型,开展了叶轮气流激振特性研究。获得了启动过程叶轮非定常受力、形变及应力的变化规律,发现在30%设计转速之后叶轮形变显著增大,最大形变出现在轮盖入口端的外壁面,最大等效应力出现在叶顶吸力面与轮盖入口端内壁面的交界处。
其他文献
超临界二氧化碳(SCO2)高温透平是SCO2布雷顿循环发电系统中不可或缺的关键部件。由于SCO2高温透平轴端的干气密封耐热性较差,难以在透平的高温环境中工作,所以必须对透平主轴采取主动冷却措施,以降低干气密封的环境温度,保证密封的稳定运行。SCO2高温透平的主动冷却设计将一股低温SCO2流体,引入到叶轮和密封的主轴间隙进行旋转对流换热,达到冷却主轴并保护干气密封的目的。针对SCO2高温透平的干气密
随着航空事业的发展,对环境友好的要求越来越高,低污染燃烧室得到广泛研究和运用。燃烧室污染物的形成与头部空气分配与雾化掺混密切相关,中心分级的燃烧室以能够提高雾化质量和减少污染而被广泛应用。为了理清新的燃烧组织方法与新的雾化技术之间的联系,其研究方法从最初的接触式测量进步到如今的光学测量方法,这为现代低污染燃烧室雾化特性的研究提供了新思路。本论文借助先进光学诊断技术开展受限空间内预膜与射流组合式燃油
供暖需求的大幅增加使北方城镇冬季的雾霾天气愈发频繁。从清洁供暖角度出发,结合风能以及热泵的热量倍增效应,诞生了风热机组这种全新的供暖方式,在风力机传动机构高速轴侧直连一台压缩机,风力机直接驱动压缩机运行,同时带动整个热泵系统进行供暖,具有巨大的经济环境效益。相比于其他形式的风能供暖,风热机组相关的研究较少,在仿真方面缺少对动态模型的研究,在实验方面缺少对风热机组的性能测试研究。为深入了解风热机组的
燃气涡轮发动机的过渡态是指发动机由某一稳定工作状态安全地过渡到另一稳定工作状态的中间状态,起动过程是一种典型的过渡状态。过渡态来流温度和压力急剧变化将会带来燃气与涡轮叶片换热的大幅度动态变化,此时容易发生内部冷却系统的不匹配(如冷气量供应不足),进而造成叶片的超温现象。燃气与叶片的对流换热很大程度上取决于叶片表面的流动状况,因此有必要研究过渡态叶片表面流动的详细机理。此外,在来流条件变化时,叶片的
压缩空气储能系统离心压缩机具有单级压比高、运行工况范围广、结构紧凑、运行平稳等特点,其特性对储能系统的运行性能具有决定性影响。排气蜗壳作为离心压缩机的重要部件之一,由于完全三维的、湍流的内部流动对压缩系统的整体性能和工作范围有着直接且不可忽视的影响,掌握其内部流动和损失机理及截面参数影响规律对蜗壳设计及系统运行性能有着重要意义。因此,本文对压缩空气储能系统离心压缩机排气蜗壳开展了三维气动优化设计方
能源是维持人类社会发展和进步的重要源泉和保障。然而在化石能源的开采和燃烧在提供能源的同时也引起了全球性环境污染问题。燃烧的污染物主要集中在多环芳烃(PAHs)和碳烟等。芳烃燃料是石油产品及其替代燃料的重要组分,且芳烃燃烧能够促进PAHs和碳烟等重要燃烧污染物的形成,是研究碳烟形成的理想平台。含氧燃料的燃烧可以减少碳烟的形成,降低污染物的排放。本论文选取苯甲醛(AlCHO)和苯甲醇(AlCH2OH)
超临界流体具有广泛的应用前景,特别是以超临界CO2布雷顿循环为代表的先进流体循环系统等方面的应用对于实现我国“碳中和”目标具有重要的战略意义,全面了解超临界流体的传热传质特性是超临界流体进一步优化应用的基础。以超临界流体为代表的复杂流场输运行为特性研究很大程度上依赖于高效测量技术的发展。其中,干涉测量法以其非侵入性等优点被大量应用于密度场、浓度场等的可视化测量。近年来,相移干涉测量技术发展起来,其
激光选区熔化技术(Selective Laser Melting,SLM)过程不受零件复杂程度制约,能够实现薄壁、复杂腔型与髓形冷却流道零件等传统制造方式较难加工结构的加工制造。冲压发动机作为典型薄壁结构具有较大的深径比,利用传统制造工艺较难实现。薄壁零件局部温度场呈动态变化、瞬态不均匀等特征,且与实体结构相比,散热面积小、温度变化大、结构刚性差,在成形过程中极易受到温度场变化的影响,因此薄壁结构
我国水泥行业产量大,能耗高,污染物排放高,已成为我国继电力和交通行业之后的第三大NOx排放源。水泥工业低NOx排放控制技术是保证其可持续发展的重要前提,但随着环保压力的不断增大,现有技术已难以满足日益严苛的NOx排放标准。针对现有脱硝技术面临的瓶颈难题,中国科学院工程热物理研究所循环流化床实验室团队提出了适用于燃煤水泥窑炉的原位还原脱硝技术。该技术通过煤粉的预处理过程产生包含煤气和半焦的高温预热燃
压缩空气储能系统的优点包括容量大、储能周期长、寿命长、易于调节等,可灵活实现与其他能源系统的互补集成。为了提高火电厂热电联产机组调节灵活性,同时增强系统调峰能力并扩大可再生能源入网比例,本文针对一种热电联产机组与压缩空气储能系统耦合的新方案进行研究。该方案在强化供热过程采用压缩空气储能系统储存电能并利用压缩热供热,以提高系统供热比例;强化供电过程利用热电联产机组抽汽加热储能系统膨胀机入口空气,以提