TEAS对焦虑症患者脑电特征与脑功能状态影响研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:ac8297090
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
焦虑是常见的负性情绪之一,严重影响着人们的心理健康及生存质量。近年来经皮穴位电刺激(TEAS)作为一种新型中医穴位疗法常用于焦虑干预,但其效果缺乏客观评价指标。脑电信号(EEG)中包含了丰富的生理与病理信息,是精神类疾病诊断与干预效果评价的重要手段。因此本文结合量表评估与EEG综合分析TEAS内关穴对焦虑症的影响。首先,针对EEG信号微弱、易受噪声干扰的特点,基于集合经验模态分解(EEMD)与独立成分分析(ICA)理论,研究一种结合EEMD和ICA的EEMD-ICA脑电去噪方法。通过对脑电信号进行EEMD分解,获得固有模态函数分量(IMF),利用相关性准则筛选含噪声成分较大的IMF分量构造虚拟通道进行独立成分分析去噪处理,将去噪后的分量与含噪声成分较小的IMF分量进行重构,对重构后的信号再次进行ICA进行去噪,得到最终去噪信号。其次,针对EEG非线性、非平稳性特点,基于卷积神经网络(CNN)与散布熵(DE)理论,研究卷积神经多尺度散步熵(CNMDE)的EEG特征提取方法。该方法根据时序数据设计CNN模型,应用卷积层和池化层获取数据中的抽象特征,通过全连接层形成全局特征;采用分段粗粒化方式将全局特征转化为不同序列,提取各序列散步熵(DE)特征,并计算其均值。CNMDE融合了空间与非线性动力学特征,量化EEG复杂度时能获得更加全面的信息。最后,利用近似熵(ApEn)、关联维数(D2)和CNMDE作为大脑活动性的指标,小波熵(WPE)和能量熵(EE)作为反映脑电节律变化指标,结合SAS量表评分分析TEAS技术刺激内关穴与非穴位,不同刺激频率以及不同电刺激天数的EEG信号,探究电刺激内关穴对焦虑的影响以及不同刺激频率及时间的效应差异。
其他文献
随着世界科学的日益发展,人工智能技术在图像检测与分割方面的研究受到越来越多研究学者的关注,其中语义分割是图像检测与分割的一个重要分支,其已在日常生活中得到了广泛的应用。其中DeepLab网络是一种非常有效的深度卷积语义分割网络模型,它对目标图片能较好地进行识别分割,但该网络仍存在一些不足。本文针对如何进一步提高DeepLab网络模型性能展开研究,本文主要工作与创新点描述如下:(1)为了增加网络模型
本文研究了一个mπ≠0时的改进的Skyrme模型,在重子数守恒的新的标度变换下,同时考虑孤立子的转动与振动耦合,通过最低阶半经典近似处理,推出了包括振动与转动耦合在内的、与标度参数有关的孤立子哈密顿,由N、Δ的能级分裂公式定出了理论参数fπ和m,并且计算了核子的静态性、N、Δ的能量。计算结果表明,和原先Skyme模型的预言相比,绝大部分数据有了改进。其结果基本符合于实验值。
近年来,随着电商平台的日益发展,产生的数据量也逐渐庞大,如何有效地从各类多源异构数据中挖掘出有效信息成为亟待解决难题。电商平台多采用基于关键词匹配的商品检索机制,匹配范围往往局限于商品标题,商家为了提高自身销售商品的检索率往往会在商品标题中加入对商品特性的描述或优惠信息等文本给商品真实名称的识别带来很大困难。因此,本文将从以下几个方面进行研究。首先,针对电商领域命名实体识别比较困难的问题,使用Se
随着人工智能技术的发展及广泛应用,图像显著性检测技术成为计算机视觉领域热点研究内容之一。图像显著性检测原理是模仿人类视觉注意力机制提取图像中包含着重要信息的显著区域,进而降低后续图像处理任务的计算复杂度,提高计算效率。该技术广泛应用于图像检索、图像分割等计算机视觉处理任务。图像显著性检测算法的研究具有重要意义。首先对传统算法提取特征较为单一,生成的显著图背景抑制不彻底,前景丢失等不足进行改进。设计
水下图像是海洋信息的重要载体,是人们获取水下信息的重要来源,在海洋资源的勘探开发中得到了广泛的应用。但光在水中传播时,水介质会对其产生强烈的吸收和散射作用。这会给水下图像带来细节模糊、对比度低、颜色退化等严重问题,图像的失真限制了目标的能见度,给物体识别带来一定的困难。因此,利用图像处理技术还原水下图像的真实面貌具有很高的实用价值。本文根据颜色线(color-line,CL)理论对退化水下自然彩色
【目的】调查常态化疫情防控下上海市区级疾病预防控制中心的公共卫生应急核心能力建设情况,分析不足之处,为提高上海市疾病预防控制系统面对突发公共卫生事件的应急核心能力提供建议和科学依据。【方法】采用问卷调查的方法,对上海市16家区级疾病预防控制中心的应急体系建设、疫情监测和风险评估、应急队伍人力和物资装备、新型冠状病毒肺炎(COVID-19)疫情实际应对等方面进行调查和评估。【结果】上海市区级疾病预防
随着大数据时代的来临以及计算机硬件性能的高速提升,深度学习技术在各大领域都取得了显著的成果。在自然语言处理领域,深度学习技术已经得到了普遍的应用,传统的问答系统也朝着智能问答系统的方向迈进。随着大规模结构化数据的积累,基于结构化数据的智能问答系统成为了主流。本文以英文的NL2SQL任务为研究对象,通过深度学习技术完成单表场景下和多表场景下的NL2SQL任务。首先,针对于单表查询场景下生成的SQL查
流体仿真一直是计算机图形学领域研究的热点之一,烟雾作为流体的一种重要表现形式,具有多变性以及易受外界环境影响等特点,所以对于烟雾的真实感模拟变得非常困难,而关于烟雾融合的实时绘制则更具挑战性。随着技术的发展,电影特效、游戏处理等诸多领域均应用了烟雾融合的渲染。针对不同烟雾融合时的边界过渡不自然的问题,本文旨在对多烟雾融合过程中所出现的问题进行多角度的探究和了解,并且根据此问题提出一系列的理论知识和
人群计数作为智能监控领域的一个重要方向,已经成为计算机视觉领域的研究热点。随着深度学习技术的发展,基于卷积神经网络的人群计数算法取得了良好的性能,有效降低了计数误差。但是在实际的应用场景中,现有的算法仍面临许多挑战,如人群尺度变化和背景干扰等。因此,如何更好地提高人群计数精度已成为计算机视觉技术领域急需解决的问题。基于国内外研究现状以及深度学习和计算机视觉等相关理论知识,本文对如何获取更准确的人群
神经系统疾病的诊断一直是生物医学领域极富挑战性的问题,而癫痫是最常见的神经疾病之一,它是由紊乱的过度或者超同步的神经元活动所引起的,具有周期性和反复性。脑电图在癫痫的诊断中起着至关重要的作用,传统的临床手段主要借助于脑电图进行视觉检测,费时费力,并且可能会产生不必要的人为经验误差。因此,对癫痫脑电的自动分类识别是必要而且有意义的。脑电信号中包含着多种生理以及病理信息,为神经性脑疾病的诊断与治疗提供