基于超导量子比特芯片的测控与量子模拟

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:yy6590
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
量子计算被认为是新一代信息处理技术。利用量子态的叠加与纠缠性质,量子计算在处理某些问题上有具有经典计算无法比拟的优势。构成量子计算系统的基本单元是量子比特(qubit)。在过去的几十年中,人们对可用于实现量子计算的多种物理系统(如离子阱,量子点,核自旋,氮空位色心,冷原子等)进行了大量研究,取得了长足的进步。为了实现可实用化的量子计算系统,量子比特的可扩展性尤为重要。在这方面,超导量子系统被认为是最有前途的候选系统之一。在超导量子系统中,量子比特的制备工艺与半导体制备工艺相通,参数可调范围大,赋予了设计量子芯片极大的灵活性。二十多年来,超导量子计算发展迅速,国内外许多科研机构与知名科技商业公司相继加入相关研究,实现了从单量子比特到几十个量子比特发展,在特定的算法上已经显示了相对于经典计算的量子优势。当然超导量子比特研究道路上还有很多有待解决的问题,比如怎么实现更好的比特退相干,更精确的比特门操控,更大的比特集成数目,更小的比特间串扰,更多比特的操控能力等。本论文主要介绍本人在博士研究生期间从事的量子比特测控与量子模拟方面的研究以及所取得的相关成果。论文第一章主要介绍量子计算的发展历史、超导量子比特基本理论知识与相关测量与控制的原理。第二章主要介绍在博士期间参与构建的一套量子比特测控的硬件与软件系统。在硬件方面,参与研制了用于多比特测控的电子学硬件系统,该系统具有延迟时间短、集成性好、可扩展性强、体积小、以及使用灵活等特点。利用FPGA,编写了片上算法,实现了信号快速解调和波形输出。经测试,反馈延迟为178.4ns,可用于量子反馈的相关研究工作。在软件方面,开发了一套基于Python3语言的多比特测控软件。此软件遵从多个设计原则,能够较好地满足量子比特芯片测控的各个需求,已经用于多个量子模拟实验中。第三章主要介绍了一些量子比特测控技术,包括:量子比特各个参数的表征,实验不理想过程的校准,以及一些基本优化工作。利用建立的硬软件测控系统,进行了大量超导比特、谐振腔、约瑟夫森参量放大器等样品的表征,支持了器件制备工艺的持续优化与改进,促进了量子比特退相干的提升。此外,也探究了三种动力学解耦方法对量子比特相位退相干的抑制。结果显示最优化方法能使相位退相干时间接近能量弛豫时间2倍,接近理论极限。具有宇称时间反演对称性(即PT对称性)的非厄米系统具有很多新奇性质,是当前研究的一个重要课题,相关研究可能用于量子精密测量。本论文第四章描述了我利用参量调制方法在超导量子比特中实现PT对称相变观测的工作。首先,实验上验证了用参量调制的方法可以实现比特与读出腔之间的可控耦合,对能级耗散进行调节。随后,改变相关参数,实验上观察到PT对称破缺相变,并用两种方法确定相变点(即EP点)位置。最后,通过调节耗散大小,展示了EP点位置与耗散的关系。实验中,测得的实验结果与理论预期基本符合。参量调制调节耗散观测EP点的方法,不需要增加额外硬件,也不需重新设计器件,有利于应用在多比特器件中,探索非厄密体系的各个性质。第五章内容为在一维10量子比特系统中实现Z2格点规范场的量子模拟工作。我首先对量子比特的各个参数进行了标定,并对一些不理想的因素进行了校准及优化。在此基础上,,考虑串扰和读取等多个因素,选择好实验工作点,最后实现了整个有效格点规范哈密顿量的演化。在实验上观察到理论预言的非局域与局域现象,测量得到的规范不变算子的数值也与理论预期结果一致。最后,在第六章中,我对博士期间工作进行了总结,并对量子计算测控以后的工作进行了展望。
其他文献
超导电性因具有零电阻、完全抗磁性等特点具有巨大的应用价值,因而对于超导材料的探索和调控有重要的研究意义。特别是层状的硫族化合物材料,通过化学掺杂以及施加物理压力等方式可以有效地探索或调控超导电性,有助于我们理解若干基础物理问题,例如多种竞争序及其对超导配对的贡献,超导电性和电荷密度波的依赖关系等。本论文利用高压、低温、磁场等物性测量实验手段,选取层状硫族化合物超导系列材料以及拓扑半金属Rh Sn为
近年来,利用人工量子系统模拟量子多体物理,即量子模拟,吸引了极大的研究兴趣。超导量子电路作为人工量子系统的一种,具有扩展性好,相干时间长,以及操作灵活和精度高等优势。因此,超导量子电路被认为是实现通用量子计算的最有竞争力的候选者之一,同时,多量子比特超导电路也是执行量子模拟的优秀平台。本论文主要聚焦于基于多量子比特超导电路的量子模拟研究。在第一部分,我们主要回顾了超导量子电路的基本知识,其中包括超
磁性相互作用是关联电子体系中各种新奇量子态的重要驱动力之一。作为基于大科学装置平台的先进测量手段,中子散射和缪子自旋驰豫/旋转/共振技术(μμSR)在研究静态磁结构和动态磁激发方面具有不可替代的作用。利用非弹性中子散射技术,我们可以测量非常规超导体的自旋激发谱并研究其与超导之间的关系;利用弹性中子散射或μSR技术我们可以确定材料中的磁结构和磁相变温度;μSR技术还可以研究样品内部磁场的静态分布和动
随着超导材料在科研、航天、医疗、工业等领域的应用日趋广泛,对超导电性机理的研究愈发重要和迫切。极低温/矢量场扫描隧道显微学/谱学(STM/S)有超高的空间与能量分辨率,是探索材料表面纳米尺度性质的不可或缺的高端实验手段之一,尤其在对非均匀、小能隙超导材料的研究中,具有独特的优势。本论文中,我们利用自主设计制造的STM对三种不同类型的超导材料进行了系统研究,包括传统超导体NbC/TaC,超导与电荷密
作为准一维直接带隙半导体材料,单壁碳纳米管(single-wall carbon nanotube,SWCNT)拥有极高的载流子迁移率、光吸收效率以及随手性结构可调的带隙,是制备高性能电子和光电子器件的理想材料。目前碳纳米管在电子、光电子器件应用方面的研究主要集中于单根碳纳米管或混合手性碳纳米管薄膜。基于单根碳纳米管的器件由于光、电信号较弱很难准确的表征其手性结构和性能,而对于混合结构的碳纳米管薄
作为一种典型的二维半导体材料,单层二硫化钼具有众多优异的性质,包括良好的机械性能与稳定性,极高的柔韧性与透明度,以及合适大小的直接带隙等。因此,二硫化钼不仅适用于低维体系中基础科学问题的研究,而且在电子学与光电子学领域具有非常广阔的应用前景。然而,单层二硫化钼走向实际应用主要受限于较低的载流子迁移率。近年来,研究人员试图通过各种手段提高二硫化钼的迁移率,例如提高薄膜结晶度,优化接触质量,以及通过提
扫描隧道显微学(STM),作为可以窥探原子的手段,自20世纪80年代发明以来,已经成为凝聚态物理学中一项有力的实验方法。本论文首先介绍了作者在搭建一台低温强磁场旋转STM/AFM系统中的工作,然后介绍了作者利用该系统,对三个材料进行研究的结果。传统矢量场STM利用筒磁+裂磁设计,难以实现高于3 T的矢量场。我们利用压电步进电机,实现了扫描头的旋转,从而实现了9 T的“矢量场”,远超传统的矢量场ST
石墨烯的成功剥离及其新奇物性的发现掀起了二维原子晶体材料的研究热潮,二维原子晶体材料包含金属、半金属、半导体、绝缘体等,其中半导体二维原子晶体材料的带隙范围从紫外到红外均有分布,因此,二维原子晶体材料在纳米电子,光电和新型超薄柔性等器件中具有潜在的应用前景。虽然已有大量的二维原子晶体材料被计算上预测,或者在实验上成功制备,但是二维原子晶体材料的宝库之丰富值得进一步挖掘,以获取高性能的材料。本文基于
本文使用脉冲激光沉积的方法首次成功地制备了锰掺杂锌砷基II-II-V族稀磁半导体(Ba,K)(Zn,Mn)2As2薄膜。薄膜的制备方法与物理性质的研究主要包括以下几个部分:1.为了制备、研究在空气中较为敏感的材料的薄膜,我们开发、研制了集脉冲激光沉积、X射线衍射、光刻、金属电极沉积、引线键合、低温电输运测量等于一体的综合研究系统,以上的操作均在不受空气影响的保护性气氛下进行。2.我们在 Si、Sr
钙钛矿材料具有灵活多变的晶体结构以及多种多样的离子组合与价态组合,因而展示了丰富多彩的物理性质,是凝聚态物理与材料科学研究的重要体系与前沿。本论文发挥高压高温技术的独特优势,制备了多种新型钙钛矿结构的氧化物材料,详细研究了材料的晶体结构与综合物理性质,取得的创新性结果主要如下:(1)利用高压高温(12 GPa,1323 K)条件合成了钙钛矿材料Pb Co O3。虽然该材料具有简单ABO3钙钛矿化学