相依结构及重尾索赔下保险中的风险问题

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:xgw111
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
现代风险理论中,保险公司的保险业务不仅是现代经济社会风险管理的重要手段,而且也是现代金融体系和社会保障体系的重要组成部分。而为了保障保险业务稳定、健康的运营,保险公司逐步发展完善了其投资业务。这就注定保险公司要同时面对高额保险索赔的风险和金融市场潜在的风险,即保险风险和金融风险。随着经济环境日益复杂化,保险公司的风险度量和管理面临着新的挑战。在随机投资收益或保险、金融风险相依结构之下如何度量保险公司的风险是现代精算学绕不过的核心问题。而破产概率就是度量保险公司风险的一个重要指标。介绍保险风险理论的研究背景和现状之后,针对三类不同重尾假定和相依结构之下的保险风险模型,本学位论文将确立整合风险过程定义的破产概率关于初始资本的渐近等价公式或者不等式。第一,将研究索赔为相依且重尾、保险风险与金融风险具有相依结构的离散时间风险模型,其中以单边线性过程刻画索赔,单边线性过程的噪声项假定为重尾的,并假定噪声项和由投资导致的折现因子(分别代表保险公司的保险风险与金融风险)具有Sarmanov相依结构。在噪声项的分布分别属于控制变化分布簇与长尾分布簇的交集以及一致变化分布簇的情形下,应用随机权和的大偏差理论得到关于离散时间风险模型有限时间破产概率和最终破产概率的各一个渐近估计式。并将上述两个渐近式应用到正则变化分布簇上,并且得到两个在形式上更易于计算的保守渐近上界。最后还给出一个覆盖所有定理和推论的例子,使结果更易理解。第二,将考察每一阶段的净损失与由投资导致的折现因子(分别代表保险公司的保险风险和金融风险)具有相依结构,且其乘积分布属于控制变化分布簇与长尾分布簇的交集的离散时间风险模型的破产概率问题,应用随机权和的大偏差理论分别得到有关离散时间风险模型有限时间破产概率和最终破产概率的各一个渐近估计式。并将渐近估计式应用到一致变化分布簇和正则变化分布簇上。在一致变化分布簇上时,大大简化渐近结果的条件。更进一步,在正则变化分布簇上时,通过改变一些条件,得到两个在形式上更易于计算的渐近估计式。第三,将考虑索赔与其到达时间间隔具有相依结构、索赔与其折现因子的乘积分布属于一致变化分布簇、投资过程是指数L′evy过程的连续时间风险模型的破产概率问题,应用随机权和的大偏差理论得到连续时间风险模型最终破产概率的渐近估计式。在此模型中,还引入索赔计数过程为更新计数过程,投资为风险资产和无风险资产的组合投资。之后,在正则变化分布簇上,通过改变一些条件,也得到一个渐近估计式。注意到,正则变化分布簇上的渐近式是一个更易直接计算的表达式。最后,对全文进行总结并指出接下来的研究方向。
其他文献
1949年前后大批大陆青壮年男性移民迁入台湾,导致台湾部分年龄组的人口性别结构严重失衡,给台湾的社会发展造成严重的后果,而人口的自然变动对缓解台湾过高的性别比起到重要
阐释学前教育学生职业能力,分析现代学徒制下学前教育职业能力培养存在的问题,并就此提出校企协作建立完善的课程体系、创建职业化氛围促进角色转变以及创设多样沟通渠道促进
普石,本名李强。现任中国铁路文联美术分会副主席、中央国家机关书法家侨会常务理事、中国铁路书协会员、新华书画院特聘画家。曾获西安世界园艺博览会全国美术书法大赛获金奖
结合海电三期工程建设期间P3,MIS实施过程中的遇到的问题,提出了自己的看法和建议。
通过重点研究亚洲金融危机后泰国的金融与实体经济发展匹配程度来评估其20年来的危机治理成效,基于灰色预测模型,选取亚洲金融危机后1998-2017年样本区间内泰国的代表性金融
ue*M#’#dkB4##8#”专利申请号:00109“7公开号:1278062申请日:00.06.23公开日:00.12.27申请人地址:(100084川C京市海淀区清华园申请人:清华大学发明人:隋森芳文摘:本发明属于生物技
以大学生为代表的青年受众是当前我国网络及新媒体的主要使用者,本文通过深度访谈和问卷调查,发现青年受众在接收政治信息时表现出有一定的政治兴趣、政治效能不高、参与度不