基于机器学习的车载同步电机驱动系统UDS诊断与评估

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:sticker2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着新能源汽车扶持政策的持续发布,如今有越来越多的高校和企业活跃在新能源汽车市场。当前我国新能源汽车正在迈向中高级阶段,有着重解决汽车本身充电、续航、安全性等基础技术问题,转向关注与其他高技术行业的协同,充分挖掘新能源汽车的潜能。本课题以故障预测和健康管理(PHM)技术为核心思想,设计了一套结合机器学习和UDS(Unified Diagnostic Services)诊断的车载同步电机的故障诊断系统以及对应的开发流程。该套系统是运用MATLAB/Simulink平台基于模型的开发模式,再结合软件自身的自动代码生成技术,使系统有图形可视化、开发便捷、易于移植等特点。对该套系统的虚拟原型机,从软件和硬件两个方面进行了验证,证明了其可行性。首先,本文从同步电机出发,选择了在新能源汽车上得到广泛运用的六相混合励磁同步电机(HESM),并对该电机及其驱动系统的故障进行了分类,从材料角度,分析了其中电机永磁去磁的原因,并做了相关的退化模拟,同时基于MATLAB/Simulink平台搭建了相应的电机去磁退化模型。在该模型的基础上,深入研读并介绍了基于CAN的UDS诊断相关的协议标准,以OSI模型为参考,重点从物理层、数据链路层、网络层以及应用层搭建了UDS诊断系统。其次,阐述了机器学习在UDS诊断的关系和应用,并在循环神经网络(RNN)的基础上,介绍了进一步优化的长短期记忆(LSTM)网络,包括其网络结构、激活函数、优化算法以及损失函数。结合MATLAB的神经网络工具箱,从时序预测结构、健康因子(HI)构建、原始数据选择等几个方面,介绍了LSTM神经网络在故障诊断中的应用。此外还对比了三种时序网络结构,并得到最佳结构。最后,在软件验证方面,整合电机去磁退化模型、UDS诊断模型以及训练好的LSTM神经网络,并详细介绍了仿真流程,预测评估了起始温度为140℃的电机去磁退化模型的故障状态。在硬件方面,结合六相HESM电机控制系统,以其整车试验历史数据作为原始数据集来训练LSTM神经网络,预测评估该电机在试验台架上连续运行一段时间后的故障状态。
其他文献
外骨骼作为综合性的科技产物,在军事、医疗、娱乐等领域应用前景广阔。外骨骼由于其自身结构的特殊性,精确的动力学模型无法直接获得,因此研究外骨骼动力学模型辨识和人机交互控制有着十分重要的意义。本文以实验室自主设计的二自由度下肢外骨骼为研究对象,首先针对传统无模型控制的局限性,给出外骨骼拉格朗日(Lagrange)动力学模型的建立过程以及利用智能群优化算法对动力学模型中的未知参数辨识进行辨识的过程。然后
目前下肢助力服可以包括柔性助力服与刚性助力服,下肢刚性助力服多为刚性连杆构成,存在结构复杂、重量大、运行功耗大等众多缺点。下肢柔性助力服以柔性材料驱动实现助力,拥有穿戴方便,重量轻等众多优点。因此,研究下肢柔性助力服的控制策略对各个关节实现高效助力有着重要研究意义。本论文对下肢柔性助力服的控制策略进行研究,主要研究机主人辅运动下的控制策略、人主机辅随动控制下的控制策略以及随动控制参数优化。建立下肢
由于人民生活水平的逐步提高,对于吃穿住行的选择也变得以舒适、便捷为首要条件,在“行”这一方面,私家车逐渐成为大众出行的交通工具,在国庆等节假日交通流量更是成倍的增长,交通事故的发生也是呈增长的趋势。分析其原因,驾驶员在疲劳和酒后驾驶造成的事故占比最高,其中酒驾行为可以通过酒精含量探测器去管控,而疲劳驾驶更多的是依靠驾驶员自身去管控。因此,设计一款疲劳驾驶检测系统在实际生活中显得尤为重要。本文在完成
在依靠实时着色方式来着色三维场景从而得到着色效果的应用领域中,例如游戏、工业仿真以及建筑设计等领域,通常需要着色效果逼真的图像为用户提供身临其境的感觉。实时着色可采用的光照模型有很多,例如Lambert光照模型、Phong光照模型以及PBR光照模型等。为了使实时着色的效果更加逼真,在实时着色时一般采用PBR光照模型来对三维场景着色,PBR光照模型会对三维场景中模型的材质预先设定,这样在光照计算时会
作为计算机视觉领域内的主要研究方向之一,目标检测的核心目的是对每张输入图像的待检测目标进行分类和定位。自2011年以来,在深度学习的辅助下,目标检测任务在医学影像、军事运用、信息挖掘等领域取得了诸多成果。然而基于卷积神经网络的目标检测技术依旧存在诸多问题。首先现阶段常见的轻量化方法忽略了特征集合自身的特点;其次,不同尺寸的目标的检测精度参差不一,检测效果处于劣势的小目标对整体精度的测算带来很多负面
当前,人们对于对流初生短临预报的需求日益增长,随着深度学习技术的不断深入发展也使得利用深度学习方法进行对流初生短临预报成为了可能。虽然我国近几年在灾害性天气中的预报取得了长足的进展,但传统的数值天气预报方法在对流初生短临预报上仍面临较大的挑战。在本论文中,针对对流初生短临预报问题,我们尝试使用深度学习的方法提升预报模型的时效性和准确性。本论文依托中国电子科技集团公司第十四研究所所控横向项目开展工作
随着经济的增长,中国的汽车总数逐年增加,这大大增加了交通事故和交通堵塞的可能性。无人驾驶作为一种新的研究领域,期望能优化由汽车带来的一系列交通问题。无人驾驶的研究是复杂且长期的,它包含了多个方面的研究,信息采集就是其中的一个。信息采集包含了对道路中各种关键信息的检测,包括车道线、红绿灯、交通标志等。本论文以无人驾驶领域中的交通标志检测为研究课题,重点研究了基于YOLO v3改进算法的交通标志检测、
人体语义分割是一种精细的语义分割任务,其目的是在像素级尺度上识别人类图像的组成部分(如身体部位和衣服)。理解人类图像的内容,对电子商务、人机交互、图像编辑和虚拟现实等一些潜在的应用很有应用价值。目前,随着基于语义分割的全卷积神经网络的发展,人体语义分割取得了重大进展。人体语义分割与一般的图像分割相比,其难点主要有以下几个方面:首先,人体语义分割在实例场景下的数据比较复杂,涉及到多种场景,例如多人或
随着通信技术的发展,辐射源个体识别在很多领域具有广泛应用,例如电子信息对抗、频谱管理、生命科学和故障诊断等领域。然而现在的辐射源个体往往具备多种调制方式、中心频率、传输速率等特点,这将给辐射源识别带来极大挑战。在辐射源个体之间无明显差异的场景下,基于传统机器学习的辐射源个体识别算法准确率往往不够理想,而且其复杂度比较高、识别时间长,导致其很难满足现代的实际工程需要。为了解决以上问题,本文主要采用基
为让机器人在工作环境中自主地移动,定位和绘制环境地图这两项基础功能便是不可或缺的。经多年发展,基于视觉的同时定位和制图(Visual Simultaneous Localization and Mapping,VSLAM)已经有比较成熟的框架,且能为机器人提供基本的环境感知能力。SLAM(Simultaneous Localization and Mapping,SLAM)系统框架的前端是整个框架