论文部分内容阅读
近年来,随着无线通信技术的发展,移动通信网络极大地便捷了人们的生活,也深刻改变了人们的生活方式以及经济、社会运行的方方面面。然而,随着物联网、车联网的逐步普及以及人们对高速无线数据服务需求的巨大增长,无线通信网络对传输速率以及网络时延的要求也越来越高。为了实现更快的传输速率以及更低的网络时延,给无线通信技术对能源以及频谱的利用带来了巨大的挑战。事实上,信息通信产业产生的碳排放量已经占整个工业碳排放量的百分之二左右。巨大的能源消耗不仅对环境造成破坏,也会造成运营商运营成本的增加,反过来这些成本也会部分转嫁到消费者身上。因此如何提高能源利用效率、降低无线通信网络对传统能源的依赖成为近年来无线通信领域国内外专家学者研究的热点。除能源外,频谱资源在新一代无线通信技术中的稀缺性也变得更加严峻。最大化提高频谱资源利用率,充分挖掘有限频谱资源的利用潜力,也一直是无线通信技术研究者孜孜不倦的追求。本文研究了新一代无线通信网络中能源-频谱效率的优化机制。为了提高无线通信技术能源-频谱效率,降低无线通信网络对传统能源依赖,本文对智能电网供能场景下基站非连续传输机制、放大转发中继网络多中继多用户场景下中继信息线性处理机制、中继通信网络多中继多用户场景下资源分配以及多系统间可再生能源协作频谱共享机制等进行了研究。本文的主要贡献如下:1)研究了智能电网供能场景下OFDMA蜂窝网络基站非连续传输能效优化机制。在分布式智能电网中,由于可再生能源的不连续性以及存储的有限性,可再生能源售卖站可提供的电能的量是有限的,并且由于制造设备成本的原因,可再生能源的价格比传统能源略高,因此无线蜂窝网络有必要确定从哪些售卖站中购买多少电能从而在最大化运营商收益的同时兼顾到温室气体排放。为了降低无线网络能耗,并降低对环境的影响,本章建立了基站非连续传输、资源分配和智能电网能源购买的联合优化模型。为了求解该优化问题,提出了一种基于拉格朗日对偶法的次优化分布式算法。该算法可以在无线网络端和智能电网端轮流进行运算,有效降低了问题求解复杂度。仿真结果表明所提的非连续传输、资源分配以及智能电网购买优化机制可以有效降低移动通信网络的能源消耗以及对传统能源的依赖。2)研究了 OFDMA放大转发(AF)中继网络多中继多用户场景下频谱效率优化问题。首先提出了一种在基站传输功率以及中继功率放大因子固定条件下最优的多中继多用户场景下的AF中继信息线性处理机制以最大化系统吞吐量。在此基础上,通过提出的线性处理机制可以得到最优的子载波配对、中继选择以及用户选择方式。仿真结果验证了所提线性处理机制可以有效提高频谱效率,并在结合拉格朗日对偶法后可以有效提高系统吞吐量。3)研究了多输入多输出(MIMO) OFDMA中继网络多中继多用户场景下的能量-频谱效率联合优化问题。建立了对中继选择、子载波配对、传输模式选择、信道用户分配以及功率分配进行联合优化的数学模型。由于所建模型为混合整数规划问题,并且在0-1变量中存在四阶张量,因此所建优化问题在求解时存在较大的难度。在拉格朗日对偶算法基础上,通过提出四阶张量分解技术,将四阶张量分解为一个矩阵和若干向量的乘积,进而将原问题转化为一个主线性规划问题和若干简单的线性规划子问题。最后利用线性规划算法对这些子问题逐一求解,降低了问题求解复杂度,并且进一步证明了所提算法保留了较强的拉格朗日对偶性。仿真实验表明了所提算法能够有效地提高MIMO OFDMA中继系统吞吐量。4)研究了多系统间可再生能源协作与频谱资源共享机制以提高可再生能源利用效率和频谱效率。由于地理位置及传输负载的差异,不同无线系统可利用的可再生能源以及对可再生能源的需求是不同的。这会造成可再生能源较大的浪费。基于此,提出了一种多系统间可再生能源协作机制。为了提高系统频谱效率,提出了一种基于载波聚合技术的频谱共享机制,并将联合能源协作与频谱共享机制与传输功率优化等相结合,降低小区间干扰,最大化能源-频谱效率。由于所建模型为多目标优化问题,提出了一种基于单纯形支配的MOEA/D-M2M多目标进化算法,对该问题进行了求解。仿真结果验证了通过系统间可再生能源协作与频谱共享机制,可再生能源的利用率和系统频谱效率有了较大幅度的提高。