论文部分内容阅读
硅基光电子材料是未来信息科技发展的关键材料,但由于硅是一种间接带隙的材料,本体发光效率极低,导致硅基光电子集成难以实现.为了改善硅材料本身的发光性能,国内外已经进行了许多研究,其中硅/有机半导体复合发光也是一个重要的研究方向,但目前进展甚微。有机半导体材料具有易加工低成本和能高效发光等优点,实施硅材料与有机半导体材料的复合,则有望克服硅材料的上述缺点,实现硅基光电集成;同时对硅/有机半导体复合体系中可能存在的能量转移、电子转移等作用过程进行系统研究,可以发现一些新现象、新结构,丰富相关理论。因而,对硅/有机半导体复合材料与器件的研究具有重要的科学意义和应用前景。本文首先综述了硅/有机半导体复合光电材料与器件的研究进展,然后以电化学腐蚀法制备多孔硅(PS),PS的扫描电镜表征结果表明,随着电化学腐蚀时间的延长,多孔硅的孔径变大;通过电化学沉积的方法制备PS/N,N’-苯基-3,4,9,10-花四羧基二酰亚胺(DPP)复合材料,PS/DPP复合材料研究结果表明,随着PS孔径的增大,DPP更容易进入孔内与PS接触,形成更大的两相界面;PL谱结果表明,复合后PS和DPP的PL都有一定程度的淬灭,而表面光电压谱(SPS)结果表明,复合后体系SPS响应增强,这说明在PS/DPP复合材料中,光生载流子的电荷分离效率得到提高;电化学腐蚀时间为60 min的PS与DPP复合后,体系的SPS响应增强幅度最大(从51μv增加到100μV),这是由于该复合体系有较大的两相界面。以萘钠为还原剂,与SiCl4进行反应,在溶液中合成了表面链接辛氧基的可溶性纳米硅,并使之与聚乙烯基咔唑(PVK)进行复合,PL谱和紫外-可见光(UV-vis)吸收光谱研究结果表明,纳米硅的UV-vis吸收光谱和PVK的PL谱有较大重叠,可能导致两者之间的福斯特共振能量转移(FRET),通过光谱重叠计算得到FRET的福斯特临界距离(R0)为51(?);PL谱和激发(PLE)谱结果表明,在纳米硅/PVK复合材料中,PVK的PL强度随纳米硅含量的增加而减弱,以明显红移于PVK的吸收边的激发光(415 nm)激发复合薄膜所得到的PL强度,弱于PVK和纳米硅同时被激发所得到的PL强度,同时PLE谱结果显示,纳米硅的PL除了来自自身被激发而发光的贡献外,还有来自PVK的激发贡献,表明了在该复合体系中存在从PVK到纳米硅的能量转移;时间分辨PL谱结果表明,复合后PVK的荧光寿命随着纳米硅含量的增加而变短,而纳米硅的荧光寿命则随着它的含量的增加而延长,通过荧光衰减动力学计算得到的R0为47(?)。这与通过光谱重叠计算得到的结果接近;通过计算得到了从PVK到纳米硅FRET的效率(最高为0.42)和速率(最大为11.10×107s-1)。以N-十二烷基-N’-苯基-苝酰亚胺(DOPP)与纳米硅复合,PL谱显示,复合后纳米硅有较大的荧光淬灭,由于DOPP的UV-vis吸收光谱和纳米硅PL谱有一定重叠,提出荧光淬灭有可能是从纳米硅到DOPP的FRET过程所致;通过计算估算出DOPP浓度为10%的复合材料中,FRET过程只对22.4%的纳米硅荧光淬灭有贡献,但是纳米硅的荧光淬灭高达78%,据此提出还有其他的机理来支配荧光淬灭;循环伏安测试结果表明,DOPP和纳米硅具有能级交错结构,因此提出存在于两者之间的电子转移可能会主导纳米硅的荧光淬灭;时间分辨PL谱结果表明,复合后纳米硅的荧光寿命得到延长,这进一步说明电子转移是荧光淬灭的主导原因;电子转移也导致了体系光敏性的大幅提高,复合后体系的光敏性最多可提高近4倍。以p型单晶硅为阳极,可增强有机电致发光器件(OLEDs)的空穴注入,但是这也导致了器件电子(少子)、空穴(多子)注入的不平衡,以往的研究思路多是采用压制空穴注入(如在硅阳极长出一层SiO2)的方式,来实现电子、空穴平衡注入;我们采用三(5-氟-8-羟基喹啉)铝作为电子传输材料来制备硅基/有机复合发光器件,研究结果表明,与常用电子传输材料-三(-8-羟基喹啉)铝(Alq3)相比,5FAlq3可以有效提高器件电子注入,这样就在一定程度上改善了硅基/有机复合发光器件电子、空穴注入不平衡的状况,但是由于5FAlq3的荧光量子效率较低,并且经5FAlq3改善后的电子注入仍不足以与器件空穴注入相匹配,导致器件发光性能与效率仍未提高;为此,在器件中引入空穴阻挡材料——1,10-邻菲罗林衍生物(BCP),实现了器件发光层(Alq3)与电子传输层(5FAlq3)的功能分离,结果器件的效率得到了较大提高(功率效率由0.117 lm/W提高到0.426 lm/W);引入BCP后,器件在硅阳极电阻率为1Ωcm时得到最大功率效率,这也说明此时器件的电子、空穴注入最为平衡。