应用逆跳MCMC算法进行局部图比对

来源 :苏州大学 | 被引量 : 0次 | 上传用户:hao68
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
生物网络通常都是非常复杂的,如何从一个复杂的网络中搜索出网络motifs,这是生物学一直关注并致力于研究的问题.在搜索网络motifs问题上,如何确定出参与图比对的子图个数k是个至关重要的问题,而借助于逆跳MCMC算法正好可以用来处理含有未知分量个数κ的指数混合模型问题.   本文主要分三个部分.第一部分介绍了局部图比对的基本概念,同时讨论并建立了局部图比对的几个统计量.第二部分建立了一个混合Bayesian模型上的分层模型,并给出了一些变量的先验信息.第三部分在第一部分所建立的指数混合模型的基础之上,给出了逆跳移动的六个详细步骤,并将逆跳MCMC算法用于搜索网络motifs问题上,同时给出了逆跳MCMC算法用于确定参与局部图比对的子图个数κ和共有模式即motif的具体的理论基础及实现步骤.
其他文献
自1962年Bézier曲线由法国工程师皮埃尔·贝塞尔发明至今,Bézier曲线以其结构简单、直观、实用而成为CAD/CAM等几何工业中表示曲线曲面的重要工具之一。然而,对于给定的控制
考虑到杀虫剂函数是随时间变化的连续指数函数,而且多次频繁的使用同一种杀虫剂,害虫会产生抗药性,在相关害虫的抗药性方面的理论知识以及参考已有文献理论研究的基础之上,结合实
本文研究了基于有限体积中心格式和交错网格的高阶中心Hermite WENO(weighted essentially non-oscillatory,HWENO)数值格式的构造及其应用,在空间上采用HWENO重构进行离散,时
时间分数阶Black-Scholes方程在期权定价中有着日益广泛的应用。本文旨在研究该方程的数值解法,构造和分析了两个有效算法。第一个算法结合了时间方向的有限差分和空间方向的
学位
为培育高度抗逆和无选择标记的转基因小麦,本研究从NCBI数据库中搜索到ThIPK2基因序列,依据该基因编码的氨基酸序列,参照小麦偏爱的密码子对该基因进行密码子优化,并将重复的
本文主要以对偶Brunn-Minkowski理论为基础,星体为研究对象,运用凸体几何知识和泛函分析方法,结合数学领域中具有较高应用价值的Clarkson不等式、Bellman不等式、Minkowski积分
用D={z∶|z|<1}表示单位圆盘, C∞表示扩充复平面.设f(z)在D内解析且连续到边界(a)D,则f((a)D)是局部连通的紧集。设C∞f((a)D)=Uj≥0Wj为连通分支分解,则Wj单连通且具有局部连通
本文应用阿基米德copula刻画随机变量间的相依性结构,对于由两个元件组成的并联系统,我们比较了由旧元件组成的新系统的寿命与旧系统的剩余寿命的随机大小,得到了似然比序存在的
本文主要研究了若干正线性算子的逼近。在第二章中构造了Lupas-Baskakov-Bézier算子,利用Ditzian-Totik模与K-泛函的等价性,得到了该算子在CB[0,∞)空间及Lp[0,∞)空间中逼近的