【摘 要】
:
本文研究了一类高阶方程的解的性质,包括弱解的存在唯一性,解的爆破,熄灭及非熄灭性质.本文的内容共有五章.在第一章中,我们简要介绍了本文研究的所有问题及结论.在第二章中,我们研究了等温快速相分离过程中出现的具有惯性项的粘性Cahn-Hilliard方程的初边值问题,由Galerkin方法和紧性定理,得到了广义解的整体存在性.为了得到解的爆破性,我们建立了一个新的泛函并考虑Bernoulli型方程的解
论文部分内容阅读
本文研究了一类高阶方程的解的性质,包括弱解的存在唯一性,解的爆破,熄灭及非熄灭性质.本文的内容共有五章.在第一章中,我们简要介绍了本文研究的所有问题及结论.在第二章中,我们研究了等温快速相分离过程中出现的具有惯性项的粘性Cahn-Hilliard方程的初边值问题,由Galerkin方法和紧性定理,得到了广义解的整体存在性.为了得到解的爆破性,我们建立了一个新的泛函并考虑Bernoulli型方程的解.在一些估计的基础上,利用二阶常微分不等式的一个引理,得到了初边值问题解的爆破性.在第三章中,我们研究了三元油-水-表面活性剂体系相变动力学中出现的含惯性项的粘性Cahn-Hilliard型方程在一维空间中的初边值问题,得到由该问题生成的动力系统在相空间H3(Ω)× L2(Ω)中存在一个整体吸引子.在第四章中,我们在有界区域内考虑一类具对数的p-双调和非线性抛物方程的初边值问题,得到了相对完善的三个结论:当2<p<q<p(1+4/n)及u0∈W+时,我们得到了弱解的整体存在性;当2<p<q<p(1+4/n)及u0∈W-时,我们得到了弱解在有限时间内爆破;当max{1,2n/n+4}<p≤2时,我们分别得到了弱解的爆破,熄灭及非熄灭结果.在第五章中,我们考虑了六阶退化对流Cahn-Hilliard方程的Cauchy问题,并研究解的存在性.为了证明古典解的存在性,主要困难是由方程在x1方向退化和非线性项△x’2A(u)造成的.我们所用的方法是长短波法和频率分解法.为了估计低频部分,我们使用Green函数法;而对于高频部分,我们使用能量估计和Poincare-like不等式.使用标准的连续性方法,我们首先建立局部解的存在性,然后基于解的一致估计得到整体解的存在性.
其他文献
这是针对残疾人出行生活不便而设计的多功能拐杖,运用单片机作为控制系统、同时内置GPS定位、GSM通信。可以实现舒适防滑、高度调节、超声波测距报警、摔倒报警、语音等功能。大多残疾人的出行都得依赖各类辅助出行的工具,而拐杖更是其中使用率最高的工具之一。盲人或下肢无力等类型的残疾人出行都得依靠拐杖,但传统拐杖缺点明显,甚至无法很好保障残疾人的出行安全。
仿射代数几何是代数几何的一个分支,其基本研究对象为仿射空间以及其上的多项式映射.雅可比猜想和Tame生成子问题是仿射代数几何领域的两个著名的公开性问题.多项式自同构是研究仿射代数几何的重要工具,同时多项式自同构以及多项式自同构群的结构也是重要研究课题.本文的研究课题源于多项式自同构的研究.设K是特征0的域,K[X]是n元多项式环,F:Kn→Kn是多项式映射.如果F是可逆映射且其逆映射仍为多项式映射
实际生活中,我们通常会遇到整数值时间序列,如购物商场的售出商品数量、每月保险理赔的次数、股票市场每日的交易次数等.由此整数值时间序列在近年来获得越来越多统计工作者的关注.本文前面部分研究了几类二元泊松整数值广义自回归条件异方差模型的统计推断问题.首先,基于二元泊松分布的另一种定义将一元整数值广义自回归条件异方差模型推广到二元泊松情形,其模型突出的优点是允许序列的正负交叉相关性,随后考虑最大似然估计
微分方程边值问题经常被用于刻画实际问题,在数学,物理,工程及相关科学领域中有重要的应用.在各种方程问题之中,二阶微分方程边值问题扮演着重要的角色.从力学的观点来看,由于二阶问题描述的基本物理事实为牛顿决定性原理,是刻画物体运动的基本规律之一,相关的问题出现在各种科学及工程模型之中,始终受到人们的广泛关注.当非线性项与梯度无关时,相应的问题为“守恒”问题,人们已经给出了各种各样的研究方法,其中最常用
本文主要研究了基于负二项稀疏算子的若干整数值时间序列的统计推断问题.首先,为了刻画具有活跃的数据生成机制且具有相关性的二元整数值时间序列,我们给出了一个推广的负二项稀疏算子并基于该稀疏算子利用预设新息过程分布的方法提出一个二元INAR(1)过程.证明了该过程具有严平稳遍历性,给出了其概率性质和判断边际分布的离差情况的条件.同时基于条件最小二乘估计和条件极大似然估计方法研究了参数的估计问题.进一步,
网格生成在数值计算领域占有非常重要的地位,在该领域中,有一些尚未解决的问题本质上是数学问题.例如,当考虑三维四面体网格的生成问题时,人们发现存在很多不可被三角分解的多面体,即在不添加新顶点(斯坦纳点)的前提下不能被四面体剖分的多面体.事实上,网格生成方法中的推进波前法(AFT)的收敛性问题,本质上就是这个问题.自1911年以来,不可被三角分解的多面体不断地被发现,且大部分都是非凸拟柱体,那么,什么
本文中,我们以H表示复可分Hilbert空间,<.,.〉为H上的内积.我们定义B(H)为H上所有有界线性算子构成的集合.K(H)为B(H)的紧算子理想.定义0.0.1([51]).称H上的映射C是一个反酉算子,若C是共轭线性、可逆的,并且