论文部分内容阅读
LiBr+H2O溶液在除湿系统和吸收式制冷系统中存在易结晶、腐蚀性强等问题。为了达到扩大溶解度、降低饱和蒸汽压、缓解腐蚀性、降低发生温度等目的,本文提出向溴化锂溶液中添加离子液体[Emim]OAc。本文测定了LiBr+[Emim]OAc+H2O三元体系的固/汽-液相平衡数据,采用不同模型对数据进行关联和预测,分析了三元溶液的除湿效果和吸收特性。在溶液除湿、吸收式制冷系统中,溶解度和饱和蒸汽压力都是重要的物性参数,目前关于含离子液体三元体系的固/汽-液相平衡的研究很少,因此本文的研究是很有必要的,本文的主要研究内容及研究结果如下:首先,测定了LiBr+[Emim]OAc+H2O三元溶液在288.15K、303.15K、323.15K、343.15K温度下的固-液相平衡数据,得到等温溶解图,分别采用四参数半经验公式、Apelblat模型和本文提出的溶解度方程对实验数据关联。结果表明,[Emim]OAc对LiBr有扩溶的效果,提高了LiBr在水中的溶解度,添加的[Emim]OAc质量越多,LiBr在水中的扩溶量越大;在LiBr+[Emim]OAc+H2O三元饱和溶液中,[Emim]OAc的质量分数ω2和LiBr的质量分数ω1呈负相关;三元溶液的溶解度与温度呈正相关,与质量比呈负相关(本文提及的质量比均指溴化锂与离子液体的质量比)。其次,设计并定制了气密性良好、便于拆装的视窗反应釜,搭建了高精度的饱和蒸汽压测试系统,测试了系统的真空度、气密性和可靠性,并分析了实验误差。测量了系统的真空度,系统内绝对压力最低可抽至13.8Pa,接近绝对真空状态;检验了系统的气密性,在保压的4.5个小时内,压力从13.8Pa升至176.6Pa,系统的气密性良好;测定去离子水、溴化锂溶液的饱和蒸汽压,实验值与理论值的偏差均在±8%以内,验证系统是可靠的;分析了温度测量和压力测量的不确定度。接着,测定了LiBr+[Emim]OAc+H2O三元饱和溶液、三元非饱和溶液在303.15K~388.15K的温度区间内的汽-液相平衡数据,采用Antonie方程对数据进行拟合。三元饱和溶液有如下结论:当LiBr+[Emim]OAc+H2O三元饱和溶液的饱和蒸汽压取得最低值时,质量比在3~4范围内;三元饱和溶液饱和蒸汽压的最小值低于二元溴化锂饱和溶液饱和蒸汽压,在30、70℃温度下,分别降低了10.4%、13.7%。三元非饱和溶液有如下结论:相同浓度下,三元溶液的饱和蒸汽压高于溴化锂溶液的饱和蒸汽压,且随着质量比的减小而增大;相同溴化锂质量分数下,三元溶液的饱和蒸汽压低于溴化锂溶液,且随着质量比的减小而降低;相同质量比下,三元溶液的饱和蒸汽压随着浓度的增大而降低,且质量比为3时,三元溶液的饱和蒸汽压与质量分数低10%的溴化锂溶液的饱和蒸汽压相当;相同吸收能力下,三元溶液(质量比为3、浓度小于73%)的结晶温度比溴化锂溶液的结晶温度低10℃左右;相同吸收能力下,三元溶液饱和蒸汽压随温度的增长率小于溴化锂溶液饱和蒸汽压。然后,采用统计热力学模型预测了LiBr+[Emim]OAc+H2O三元体系的饱和蒸汽压,预测值与实验值的平均绝对相对偏差为3.95%,预测精度较高;实验发现三元溶液饱和蒸汽压介于LiBr+H2O和[Emim]OAc+H2O二元溶液饱和蒸汽压之间,利用统计热力学模型从理论上进行了分析;对简单混合法则进行了修正,平均绝对相对偏差(AARD)为4.86%。最后,讨论了LiBr+[Emim]OAc+H2O三元溶液的除湿效果、制冷吸收特性。30℃、70℃的除湿温度下,与溴化锂饱和溶液相比,三元饱和溶液理论上可以使空气出口含湿量分别降低0.2g/kg、1.5 g/kg,分别降低了10.9%、14.3%;带分离装置的吸收式制冷系统常规工况下,三元溶液的发生温度为72.6℃,比常规溴化锂吸收式制冷系统的发生温度80.2℃低了7.6℃。因此,LiBr+[Emim]OAc+H2O三元溶液有潜力成为替代除湿剂,应用于更高干燥要求的场合,也有潜力成为吸收式制冷系统的替代工质对。