几类耦合非线性动力学系统周期解的研究

来源 :浙江师范大学 | 被引量 : 0次 | 上传用户:chao_huang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在过去的几十年里,随着科学技术的进步和理论研究的不断深入,非线性问题已经受到人们广泛的关注.而非线性动力学的研究主要集中在分岔,混沌和孤子这三个方面,由于非线性方程的精确解很难得出,所以寻求近似解的方法变得至关重要.目前研究非线性问题的方法主要有摄动法、谐波平衡法、多尺度法、同伦分析方法等.  本文主要研究了几类耦合非线性动力学系统的动态响应行为.第一章介绍了非线性动力学的研究背景以及同伦分析方法、多尺度方法和多频同伦分析方法应用于非线性系统的研究现状.第二章采用多尺度方法和同伦分析方法研究了具有参数激励van der Pol系统的主共振.首先研究了内共振比值不同时耦合系统的非线性动力响应.并用多尺度法得到了直角坐标系下的四维平均方程,从而发现系统存在周期运动;其次,利用同伦分析方法,得到四组周期解,其中两组正向周期解和两组反向周期解.最后,我们发现通过这两种方法得到的频率响应曲线是吻合的.第三章运用多频同伦分析方法研究二自由度非线性耦合Duffing系统.一方面,我们通过构造用多频同伦分析方法求解两自由度非线性动力系统的步骤,得到了Duffing系统单倍周期解和二倍周期解;另一方面,我们发现利用多频同伦分析方法得到的周期解和利用四阶Runge-kutta法得到的数值解是吻合的,从而,说明多频同伦分析方法是适用于二自由度耦合非线性系统的.第四章通过欧拉方法将Duffing方程转变成了离散非线性动力学系统,分析了其混沌行为.
其他文献
在本文中,我们将研究随机游动和Lévy过程的超出与不足的渐近性,也包括Lévy过程自身的渐近性.所谓超出,就是给定一个水平后,相应的过程在某个时刻,超过这个水平的程度.超出在许多领
广义逆理论研究产生于求解线性不适定方程(其中方程包括线性代数方程、微分方程、偏微分方程和积分方程等)的过程。广义逆理论研究内容丰富,其中最为突出的是关于各类投影广义逆
马尔科夫分支过程(MBP)在应用概率和随机过程等领域占有很重要的地位。众所周知,控制着Markov分支过程演变的基本性质就是它的独立性,即不同的粒子在演变过程中是相互独立的。
计算机辅助几何设计(CAGD)和计算机辅助机器制造(CAM)中,圆弧和球面是非常重要和基础的几何研究对象.现有的CAD/CAM造型系统不能处理圆和球面的参数方程和隐式方程,因此为了使现
分形被称为“大自然的几何学”,其在描述自然界各种形态方面有着巨大优势。上世纪90年代,分形理论应用在图像处理领域。而源于图像压缩的分形编码,目前已渗透到数字水印、特
曲线曲面光顺是计算机辅助几何设计的基础和核心,是曲线曲面造型中的重要问题。近年来小波方法在光顺中有了很好的应用,小波方法具有压缩数据,运算速度快等特点。但是小波光
本文研究带有饱和量化函数的线性系统和非线性系统量化状态的反馈镇定问题,提出一种称之为状态预测补偿的量化方法.通过调整调焦变量,使得量化误差在量化器能够量化的容许范
近年来,混沌动力学作为一门新兴的学科得到了蓬勃发展,并与其它学科领域相互渗透,成为非线性科学领域的一大热点。众所周之,混沌系统是有界的,混沌系统的最终界在混沌系统的定性行
分子拓扑指数是从代表化合物的分子图构成的集合到实数集的映射.由于许多拓扑指数与化合物的物理化学特性密切相关,因此,在化学、医学、制药等许多方面有着重要的应用.目前已知的
本文利用格林关系和同余的核迹方法刻画完全正则半群上的一些重要同余.证明了ρσ={(a,b)∈S×S|a0=b0,ab-1∈C(S)}是中心密码群并半群S上最小纯正同余,ρ(yy)={(a,b)∈S×S|aDb,