论文部分内容阅读
非线性算子的不动点理论作为非线性泛函分析理论的重要组成部分,它与许多近代数学分支有着紧密的联系,并在处理这些分支中的一些问题中发挥着重要作用。在不动点问题研究的众多方向中,将各种非线性算子类型和构造的收敛的迭代序列应用于优化、控制和微分方程等方面成为研究的主流问题。
本文研究了非线性算子不动点的迭代逼近问题,全文主要包括以下三方面内容。
第一部分,介绍了非线性算子理论的产生背景以及迭代算法的发展情况,为本文的后续研究工作提供了正确方向。
第二部分,研究了p-几乎渐近非扩张型映象Ishikawa迭代序列和Mann迭代序列的收敛性。在一致凸Banach空间中映象是一致渐近正则和一致连续的条件下,应用粘性逼近方法得到了当系数序列满足一定条件时,具随机误差的修正的Ishikawa迭代和Mann迭代序列的强收敛性。
第三部分,引入一类广义p-渐近非扩张型映象,给出了具混合误差的Ishikawa迭代序列强收敛于广义p-渐近非扩张型映象的某一不动点的充要条件,并在实一致凸Banach空间框架下,采用粘性逼近方法得到了广义p-渐近非扩张型映象的两种迭代算法强收敛定理,所得结论推广和改进了张石生、冯先智、向长合等人的相应结果。