【摘 要】
:
随着目标检测、图像分类、异常检测等技术广泛应用于视频监控领域,实时视频分析的需求日益增加。由于视频数据的爆发式增长,基于云数据中心的视频监控系统面临着网络带宽成本昂贵和数据时效性低的问题。作为一种新兴的计算范式,边缘计算可以在接近视频源的网络边缘提供低延迟的视频分析服务。然而,边缘云的计算资源通常受限,如何满足所有用户的低延迟和高准确率需求是一个具有挑战性的问题。特别是在请求数量激增的情况下,视频
论文部分内容阅读
随着目标检测、图像分类、异常检测等技术广泛应用于视频监控领域,实时视频分析的需求日益增加。由于视频数据的爆发式增长,基于云数据中心的视频监控系统面临着网络带宽成本昂贵和数据时效性低的问题。作为一种新兴的计算范式,边缘计算可以在接近视频源的网络边缘提供低延迟的视频分析服务。然而,边缘云的计算资源通常受限,如何满足所有用户的低延迟和高准确率需求是一个具有挑战性的问题。特别是在请求数量激增的情况下,视频分析任务的准确率和系统整体的吞吐量难以权衡。本文针对面向视频分析任务的边缘云资源调度技术展开研究。首先,为了解决任务准确率和系统资源利用率的权衡问题,本文详细分析了视频分析任务的视频质量、延迟需求和计算资源约束,构建了细粒度的计算资源与处理准确率映射模型,在此基础上设计了基于分治思想的视频质量与计算资源离线配置算法。考虑到边缘场景下各种任务的最优配置经验值往往是未知的,本文提出了梯度感知的视频质量与计算资源在线配置方法。该方法逐步学习最优配置策略,在长期内最大化准确响应任务的数量。其次,在任务实例部署阶段,考虑到边缘环境因素对算法性能的干扰,为了进一步保障视频分析任务的处理准确率,本文提出了基于帧间相似度比较的视频分析算法选择策略。为了降低视频片段上传带来的网络开销,提高计算效率,该策略采用了基于帧间差分与背景差分相结合的采样机制对视频片段进行预处理。然后该策略把算法选择问题定义为视频源相似度比较问题,通过计算关键帧的核距离为不同时刻、不同区域的视频分析任务自适应选择资源消耗低且满足准确率约束的最佳视频分析算法。最后,本文设计了面向视频分析任务的边缘云平台并实现了在线资源调度器和自适应算法选择器,为用户提供了视频接入管理、流媒体管理等基础能力。实验表明本文提出的方法能够在多种边缘场景下满足用户的准确率需求,并显著地提升准确响应任务的吞吐量。
其他文献
物联网(Internetof Things)应用作为5G系统里的一个重要的应用场景,随着时代的发展将迎来近百亿的设备接入量增长、数据流量的爆炸式增长以及不断出现的新应用场景。但是由于物联网业务的空间地理区域复杂多样,因此卫星物联网(Satellite Internet of Things)作为6G网络的一个重要应用场景被提出服务于难以建立可靠的地面回程链路的位置区域。为了弥补卫星通信网络长时延、链
安全服务是维护软件安全和保护业务数据的重要组件,保障软件安全无论是在传统环境还是在云环境下都至关重要。随着云服务的广泛应用,安全问题频繁出现,但是传统安全服务并不适用于云环境。因此在云环境下如何部署、使用和管理安全服务逐渐成为了业内关注和探索的主题。本次课题针对云安全服务的部署、使用和管理问题,对国内外的软件定义安全(SDS,Software Defined Security)方案进行了对比分析。
网络技术的飞速发展与网络基础设施的广泛部署促进了社会数字化转型发展,海量数据的计算、传输和存储也推动了大型数据中心的建设与智能化升级转型。流量调度作为一种有效利用网络资源的技术,能够优化网络性能并帮助网络快速适应业务变革。而传统的数据中心架构以及流量调度方式已不能满足低延迟连接、高质量传输的需求。因此,本文主要研究了数据中心场景下基于软件定义网络架构的动态流智能调度机制。具体论文工作与研究内容如下
随着近年来互联网的高速发展和普及,本人所在的企业积累的数据量呈指数型增长,对于大数据分析技术的依赖性也越来越强。搭建大数据任务调度平台,为企业进行海量数据的提取、分析、落地及查询等工作提供一体化的解决方案,降低数据的管理成本,聚集数据、提供创建更完整的数据画像的基础条件,为企业深度挖掘数据中的潜在价值提供基础条件成为了该企业的刚需。一个完备的大数据任务调度平台,不仅需要该平台有强大的数据计算能力,
企业如何履行社会责任,一直以来都是社会关注的热点话题,尤其是这些年来,我国已经一跃成为全球第二大经济体,企业作为引领国家经济发展的强劲队伍,更是肩负了更多的社会责任。作为企业社会责任最重要的表现形式,企业慈善捐赠无疑备受理论界关注和重视。我国自古以来就有“助人为善”的优良传统,随着改革开放以来经济的飞速提高和经济实力的不断增强,我国的慈善事业也得到十足的发展。不断有企业认识到慈善捐赠不仅仅是纯粹的
随着我国城镇化进程的推进,大量人口走进城市,但城市的面积并没有随着城市人口的增长而等比例的扩增,城市绿化面积日益紧缺,城市的居住与生态环境不断恶化,人们日益增长的绿化需求与城市绿化面积稀少的矛盾逐渐凸显了出来。而室内绿化作为改善城市居民生活与居住环境的重要方式,对人体身心健康有诸多好处,为解决城市室内绿化推广过程中遇到的“没地方养”、“养护困难”和“养护成本高”的现实问题,本文设计并实现了一套基于
信息的生产者和消费者在信息过载时代都面临巨大的挑战,而推荐系统在引导用户探索其实际需求方面起着至关重要的作用。基于矩阵分解的协同过滤算法作为推荐系统中最具代表性的模型,其基本原理是利用用户的显式和隐式反馈行为进行物品推荐,在用户和物品之间的交互信息不足时,产生的推荐结果并不准确。随着传统零售和生活服务向在线平台的快速转移,应用平台积累了众多领域的评论文本和商品图片数据,这些异构信息极大地补充了稀疏
随着网络教育的逐渐兴起,教育数据挖掘旨在从网络上记录的大量数据中挖掘有价值的信息并帮助教育者制定更多人性化的教育决策。其中,利用数据挖掘技术预测学生的学业成绩并对存在学业风险的学生进行早期预警是最为基本且重要的环节。然而与之相关的研究还存在一些不足。现有的学业预警研究通常从单一课程数据源中获取学生学习行为的相关数据进行预测,忽略了学生整体的在线行为模式和外部环境特征对学生学业的影响。其次,由于通常
自5G商用以来,人工智能、大数据、物联网等新兴技术推动网络流量迅猛增长,带宽资源愈发紧张,目前提高传输容量和频谱效率的主要方法集中在提高正交振幅调制格式的调制阶数和压缩频谱带宽,对于前者来说,高阶调制信号星座图的星座点数目随着调制阶数增加呈指数增加,而非正交时域混叠信号星座图的星座点数目随着混叠重数增加呈线性增加,相比之下非正交时域混叠信号对信噪比的要求更低,对于后者来说,单纯地压缩带宽能带来的频